
Barycentric Interpolators for Continuous 
Space & Time Reinforcement Learning 

Remi Munos & Andrew Moore 
Robotics Institute, Carnegie Mellon University 

Pittsburgh, PA 15213, USA. 
E-mail: {munos, awm }@cs.cmu.edu 

Abstract 

In order to find the optimal control of continuous state-space and 
time reinforcement learning (RL) problems, we approximate the 
value function (VF) with a particular class of functions called the 
barycentric interpolators. We establish sufficient conditions under 
which a RL algorithm converges to the optimal VF, even when we 
use approximate models of the state dynamics and the reinforce­
ment functions . 

1 INTRODUCTION 

In order to approximate the value function (VF) of a continuous state-space and 
time reinforcement learning (RL) problem, we define a particular class of functions 
called the barycentric interpolator, that use some interpolation process based on 
finite sets of points. This class of functions, including continuous or discontinuous 
piecewise linear and multi-linear functions, provides us with a general method for 
designing RL algorithms that converge to the optimal value function. Indeed these 
functions permit us to discretize the HJB equation of the continuous control problem 
by a consistent (and thus convergent) approximation scheme, which is solved by 
using some model of the state dynamics and the reinforcement functions. 

Section 2 defines the barycentric interpolators. Section 3 describes the optimal con­
trol problem in the deterministic continuous case. Section 4 states the convergence 
result for RL algorithms by giving sufficient conditions on the applied model. Sec­
tion 5 gives some computational issues for this method, and Section 6 describes the 
approximation scheme used here and proves the convergence result. 



Barycentric Interpolators for Continuous Reinforcement Learning 1025 

2 DEFINITION OF BARYCENTRIC INTERPOLATORS 

Let I:0 = {~di be a set of points distributed at some resolution <5 (see (4) below) 
on the state space of dimension d. 

For any state x inside some simplex (6, ... , ~n), we say that x is the barycenter of 
the {~di=Ln inside this simplex with positive coefficients P(XI~i) of sum 1, called 
the barycentric coordinates, if x = Li=1..np(xl~i)'~i' 

Let VO (~i) be the value of the function at the points ~i. Va is a barycentric 
interpolator if for any state x which is the barycenter of the points {~di=1.n for 
some simplex (6, ... ,~n), with the barycentric coordinates p(xl~d, we have: 

(1) 

Moreover we assume that the simplex (~1' ... , ~n) is of diameter 0(<5). Let us describe 
some simple barycentric interpolators: 

• Piecewise linear functions defined by some triangulation on the state 
space (thus defining continuous functions), see figure La, or defined at any 
x by a linear combination of (d + 1) values at any points (6, ... , ~d+ d 3 x 
(such functions may be discontinuous at some boundaries), see figure Lb . 

• Piecewise multi-linear functions defined by a multi-linear combination 
of the 2d values at the vertices of d-dimensional rectangles, see figure 1.c. 
In this case as well, we can build continuous interpolations or allow discon­
tinuities at the boundaries of the rectangles. 

An important point is that the convergence result stated in Section 4 does not 
require the continuity of the function. This permits us to build variable resolution 
triangulations (see figure 1.b) or grid (figure 1.c) easily. 

~.I , 

x+ + ~ 

(a) (b) (c) 

Figure 1: Some examples of barycentric approximators. These are piecewise con­
tinuous (a) or discontinuous (b) linear or multi-linear (c) interpolators. 

Remark 1 In the general case, for a given x, the choice of a simplex (6, ... , ~n) 3 x 
is not unique (see the two sets of grey and black points in figure l.b and l.c), and 
once the simplex (~1' ... , ~n) 3 x is defined, if n > d + 1 (for example in figure l.c), 
then the choice of the barycentric coordinates P(XI~i) is also not unique. 

Remark 2 Depending on the interpolation method we use, the time needed for com­
puting the values will vary. Following {Dav96}, the continuous multi-linear interpo­
lation must process 2d values, whereas the linear continuous interpolation inside a 
simplex processes (d + 1) values in 0 (d log d) time. 
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In comparison to [Gor95], the functions used here are averagers that satisfy the 
barycentric interpolation property (1). This additional geometric constraint permits 
us to prove the consistency (see (15) below) ofthe approximation scheme and thus 
the convergence to the optimal value in the continuous time case. 

3 THE OPTIMAL CONTROL PROBLEM 

Let us describe the optimal control problem in the deterministic and discounted case 
for continuous state-space and time variables and define the value function that we 
intend to approximate. We consider a dynamical system whose state dynamics 
depends on the current state x(t) E () (the state-space, with 0 an open subset of 
JRd) and control u(t) E U (compact subset) by a differential equation : 

dx 
dt = f(x(t), u(t)) (2) 

From equation (2), the choice of an initial state x and a control function u(t) leads 
to a unique trajectories x (t) (see figure 2). Let r be the exit time from 0 (with 
the convention that if x(t) always stays in 0, then r = (0) . Then, we define the 
functional J as the discounted cumulative reinforcement : 

J(x; u(.)) = loT -/r(x(t), u(t))dt + -{ R(x(r)) 

where r(x, u) is the running reinforcement and R(x) the boundary reinforcement. 
'Y is the discount factor (0 ~ 'Y < 1). We assume that f, rand R are bounded and 
Lipschitzian, and that the boundary 80 is C2 . 

RL uses the method of Dynamic Programming (DP) that introduces the value 
function (VF) : the maximal value of J as a function of initial state x : 

V(x) = sup J(x; u(.)). 
u(.) 

From the DP principle, we deduce that V satisfies a first-order differential equation, 
called the Hamilton-Jacobi-Bellman (HJB) equation (see [FS93] for a survey) : 

Theorem 1 If V is differentiable at x E 0, let DV(x) be the gradient of V at x , 
then the following HJB equation holds at x. 

H(V, DV, x) ~f V(x) In'Y + sup[DV(x).f(x, u) + r(x , u)] = 0 (3) 
uEU 

The challenge of RL is to get a good approximation of the VF, because from V 
we can deduce the optimal control : for state x, the control u· (x) that realizes the 
supremum in the HJB equation provides an optimal (feed-back) control law . 

The following hypothesis is a sufficient condition for V to be continuous within 0 
(see [Bar94]) and is required for proving the convergence result of the next section. 

Hyp 1: For x E 80, let nt(x) be the outward normal of 0 at x , we assume that : 
-If3u E U, s .t . f(x, u) .nt(x) ~ 0 then 3v E U, s.t . f(x, v)nt(x) < O. 
-If3u E U, s.t . f(x, u) .nt(x) ~ 0 then 3v E U, s.t. f(x, v)nt(x) > O. 

which means that at the states (if there exist any) where some trajectory is tangent 
to the boundary, there exists, for some control, a trajectory strictly coming inside 
and one strictly leaving the state space. 
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Figure 2: The state space and the set 
of points EO (the black dots belong to 
the interior and the white ones to the 
boundary). The value at some point e 
is updated, at step n, by the discounted 
value at point '1n E (el, 6, 6). The main 
requirement for convergence is that the 
points '1n approximate '1 in the sense : 
P('1nl{.) = p('1I{.) + 0(0) (i.e. the '1n 
belong to the grey area). 

O--------QO~------~~~ 

4 THE CONVERGENCE RESULT 

Let us introduce the set of points I;0 = {~di' composed of the interior (I;0 n 0) 
and the boundary (8I;° = I; \ 0), such that its convex hull covers the state space 
0, and performing a discretization at some resolution 6 : 

VxEO, inf IIX-~ill::;6 and VxE80 inf Ilx-~jll::;6 (4) 
€.EE6no €jE&E6 

Moreover, we approximate the control space U by some finite control spaces UO C U 
such that for 6 ::; 6', UO' c UO and liffiO-+o UO = U. 

We would like to update the value of any: 

- interior point ~ E I;0 nO with the discounted values at state 77n(~, u) (figure 2) : 

V~+l (~) +- sup ["YTn(€,u)V~(77n(~' u)) + Tn(~, u) . rn(~, u)] (5) 
uEU 6 

for some state 77n(~, u), some time delay Tn(~, u) and some reinforcement rn(~, u) . 

- boundary point ~ E 8I;° with some terminal reinforcement Rn(~) : 

V~+1 (~) +- Rn(~) (6) 
The following theorem states that the values V~ computed by a RL algorithm using 
the model (because of some a priori partial uncertainty of the state dynamics and 
the reinforcement functions) 77n(~, u), Tn(~, u), rn(~, u) and Rn(~) converge to the 
optimal value function as the number of iterations n -+ 00 and the resolution 6 -+ O. 

Let us define the state 77(~, u) (see figure 2) : 

77(~, u) = ~ + T(~, u).f(~, u) (7) 
for some time delay T(~, u) (with k16 ::; T(~, u) ::; k26 for some constants kl > 0 and 
k2 > 0), and let p(77I~i) (resp. P(77nl~d) be the barycentric coordinate of 77 inside a 
simplex containing it (resp. 77n inside the same simplex). We will write 77 , 77n , T, 1', 
.. . , instead of 77(~, u), 77n(~, u), T(~, u), r(~, u), .. . when no confusion is possible. 

Theorem 2 Assume that the hypotheses of the previous sections hold, and that for 
any resolution 6, we use barycentric interpolators VO defined on state spaces I;0 
(satisfying (4)) such that all points of I;0 nO are regularly updated with rule (5) 
and all points of 8I;° are updated with rule (6) at least once. Suppose that 77n , Tn, 
rn and Rn approximate 77, T, rand R in the sense: 

V~i, P(77nl~d p(77I~i) + 0(6) (8) 
Tn T + 0(62 ) (9) 
rn 1'+0(6) (10) 

Rn R + 0(6) (11) 
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then we have limn-+oo V; V uniformly on any compact 0 C 0 (i.e. "Ie > 0, "10 
0-+0 ° 

compact C 0, 3~, 3N, such that "18 ~ ~,Vn 2: N, SUp~6nn IVn - VI ~ e). 

Remark 3 For a given value of 8, the rule (5) is not a DP updating rule for some 
Markov Decision Problem (MDP) since the values l7n, Tn, rn depend on n. This 
point is important in the RL framework since this allows on-line improvement of 
the model of the state dynamics and the reinforcement functions. 

Remark 4 This result extends the previous results of convergence obtained by 
Finite-Element or Finite-Difference methods (see {Mun97}}. 

This theoretical result can be applied by starting from a rough EO (high 8) and by 
combining to the iteration process (n ~ 00) some learning process of the model 
(l7n ~ 17) and a increasing process of the number of points (8 ~ 0). 

5 COMPUTATIONAL ISSUES 

From (8) we deduce that the method will also converge if we use an approximate 
barycentric interpolator, defined at any state x E (~1"'" ~n) by the value of the 
barycentric interpolator at some state x' E (~1' ... , ~n) such that p(X'I~i) = p(XI~i) + 
0(8) (see figure 3) . The fact that we need not be completely accurate can be 

Approx-linear 

Linear 

~3 X x' ~4 

Figure 3: The linear function and 
the approximation error around it 
(the grey area). The value of the 
approximate linear function plotted 
here at some state x is equal to the 
value of the linear one at x'. Any 
such approximate barycenter inter­
polator can be used in (5). 

used to our advantage. First, the computation of barycentric coordinates can use 
very fast approximate matrix methods. Second, the model we use to integrate the 
dynamics need not be perfect. We can make an 0(&2) error, which is useful if we 
are learning a model from data: we need simply arrange to not gather more data 
than is necessary for the current 8. For example, if we use nearest neighbor for 
our dynamics learning, we need to ensure enough data so that every observation 
is 0(82 ) from its nearest neighbor. If we use local regression, then a mere 0(8) 
density is all that is required [Om087, AMS97]. 

6 PROOF OF THE CONVERGENCE RESULT 

6.1 Description of the approximation scheme 

We use a convergent scheme derived from Kushner (see [Kus90]) in order to ap­
proximate the continuous control problem by a finite MDP. The HJB equation is 
discretized, at some resolution 8, into the following DP equation : for ~ E EO nO, 

VO(~) = FO [vo(.)] (~) ~f sUPUEU6 {"IT L~t p(l7l~i).v°(~d + T.r} (12) 

and for ~ E BEo, VO (~) = R(~) . This is a fixed-point equation and we can prove that, 
thanks to the discount factor "I, it satisfies the "strong" contraction property: 

SUP~6 jv;+l - vo I ~ ,\. sup~61V; - vo I for some ,\ < 1 (13) 
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from which we deduce that there exists exactly one solution Va to the DP equation , 
which can be computed by some value iteration process : for any initial Voa, we 
iterate V~+l f- Fa [V~] . Thus for any resolution 8, the values V~ -+ Va as 71 -+ 00. 

Moreover, as va is a barycentric interpolator and from the definition (7) of "I , 

Fa [va (.)] (~) = sUPuEU6 {-yT va (~ + T.f(~ , u)) + T.r} (14) 

from which we deduce that the scheme Fa is consistent : in a formal sense , 

limsuPa--+o ilFa[W](x) - W(x)1 '" H(W, DW,x) (15) 

and obtain, from the general convergence theorem of [BS91] (and a result of strong 
unicity obtained from hyp.l)' the convergence of the scheme : va -+ V as 8 -+ O. 

6.2 Use of the "weak contraction" result of convergence 

Since in the RL approach used here, we only have an approximation "In , Tn , ... of 
the true values "I, T, ... , the strong contraction property (13) does not hold any 
more. However, in previous work ([Mun98]), we have proven the convergence for 
some weakened conditions, recalled here : 

If the values V~ updated by some algorithm satisfy the "weak" contraction prop­
erty with respect to a solution va of a convergent approximation scheme (such as 
the previous one (12)) : 

sUPE6no 1V~+1 - Va I < (1 - k.8) . SUPE6 IV~ - va 1+ 0(8) (16) 

SUP&E61V~+1 - va I 0(8) (17) 

for some positive constant k, (with the notation f(8) :S 0(8) iff 39(8) = 0(8) with 
f(8) :S 9(8)) then we have limn-+oo V~ = V uniformly on any compact 0 C 0 

a--+O 
(i .e. Vf > 0, VO compact C 0, 3~ and N such that V8 :S ~,Vn ~ N , 
SUPE6nn IV~ - Vi :S f) . 

6.3 Proof of theorem 2 

We are going to use the approximations (8), (9), (10) and (11) to deduce that the 
weak contraction property holds, and then use the result of the previous section to 
prove theorem 2. 

The proof of (17) is immediate since, from (6) and (11) we have : V~ E a'L.o , 
1V~+1(~) - va(~)1 = I Rn(~) - R(~)I = 0(8) 

Now we need to prove (16) . Let us estimate the error En(~) = va(~) - V~(~) 
between the value Va of the DP equation (12) and the values V~ computed by rule 
(5) after one iteration : 

En+d~) = SUPuEU6 {LE' [-{ p(TJI~d· Va (~d - "(Tn P(TJn I~d.v~ (~d] + T.T' - Tn .rn} 

En+d~) = SUp { "(T LE, [P( ryl~;) - p( ryn I~d] Va (~;) + b T - "(Tn] L€, p( "In I~i)' va (~d 
uEU6 

+ "(Tn L€. P(TJn I~i)' [va (~;) - V~(~;)] + Tn [1' - rn] + [T - Tn] r} 
By using (9) (from which we deduce : -{ = "(Tn + 0(82 )) and (10), we deduce : 

IEn+d~)1 < SUPuEU6 {"(T ·IL€, [P(TJI~;) - P(TJnl~d] Va (~d I (18) 

+"(Tn L€, P(TJnl~i).lVa(~d - V~(~i)l} + 0(82 ) . 
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From the basic properties of the coefficients p( 1J1~d and p( 1Jn I~;) we have: 

LE, [P(1JI~i) - P(1Jnl~d] VO(~i) = L(, [P(1JI~d - P(1Jnl~d] [VO(~d - VO(~)] (19) 

Moreover, IVO(~d - VO(~)I ~ IVO(~d - V(~i)1 + 1V(~i) - V(~)I + IV(~) - VO(~)I· 

From the convergence of the scheme V O, we have sUPE6nn Ivo - Vi ~ 0 for any 
compact nCo and from the continuity of V and the fact that the support of the 

simplex {O 3 1J is 0(0), we have sUPE6nn 1V(~d - V(~)I ~ 0 and deduce that 

sUPE 6 nn Jv°(~i) - VO(~)I o~ O. Thus, from (19) and (8) , we obtain: 

ILE' [P(1JI~) - P(1Jnl~)] VO(~dl = 0(0) (20) 

The "weak" contraction property (16) holds: from the property of the 
exponential function ,Tn ~ 1 - 2f In ~ for small values of Tn, from (9) and that 

T 2: klO , we deduce that ,Tn ~ 1 - ¥ In ~ + 0(02 ), and from (18) and (20) we 
deduce that : 

IV;+l(~) - VO(~)I ~ (1- k.0)SUPE61V;+d~) - VO(~)I + 0(0) 

with k = ¥ In 1 , and the property (16) holds . Thus the "weak contraction" result 
~ "I 

of convergence (described in section 6.2) applies and convergence occurs. 

FUTURE WORK 

This work proves the convergence to the optimal value as the resolution tends to the 
limit, but does not provide us with the rate of convergence. Our future work will 
focus on defining upper bounds of the approximation error, especially for variable 
resolution discretizations, and we will also consider the stochastic case. 
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