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Abstract 

Based on a simple convexity lemma, we develop bounds for differ­
ent types of Bayesian prediction errors for regression with Gaussian 
processes. The basic bounds are formulated for a fixed training set. 
Simpler expressions are obtained for sampling from an input distri­
bution which equals the weight function of the covariance kernel, 
yielding asymptotically tight results. The results are compared 
with numerical experiments. 

1 Introduction 

Nonparametric Bayesian models which are based on Gaussian priors on function 
spaces are becoming increasingly popular in the Neural Computation Community 
(see e.g.[2, 3, 4, 7, 1]) . Since the model classes considered in this approach are 
infinite dimensional, the application of Vapnik - Chervonenkis type of methods to 
determine bounds for the learning curves is nontrivial and has not been performed 
so far (to our knowledge). In these methods, the target function to be learnt is 
fixed and input data are drawn independently at random from a fixed (unknown) 
distribution. The approach of this paper is different. Here, we assume that the target 
is actually drawn at random from a known prior distribution, and we are interested 
in developing simple bounds on the average prediction performance (with respect 
to the prior) which hold for a fixed set of inputs. Only at a later stage, an average 
over the input distribution is made. 
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2 Regression with Gaussian processes 

To explain the Gaussian process scenario for regression problems [4J, we assume that 
observations Y E R at input points x E RD are corrupted values of a function 8(x) 
by an independent Gaussian noise with variance u2 . The appropriate stochastic 
model is given by the likelihood 

_ ( y _9 (.,))2 

e 2 .. 2 

pe(Ylx) = ~ (1) 

The goal of a learner is to give an estimate of the function 8(x), based on a set of 
observed example data Dt = ((Xl, Yl)"'" (Xt) Yt)) . As the prior information about 
the unknown function 8(x) we asume that 8 is a realization of a Gaussian random 
field with zero mean and covariance 

C(x, x') = 18[8(x)8(x')J. (2) 
It is useful to expand the random functions as 

00 

(3) 
k=O 

in a complete set of deterministic functions ¢>k (x) with random Gaussian coefficients 
Wk. As is well known, if the ¢>k are chosen as orthonormal eigenfunctions of the 
integral equation 

/ C(x,x')¢>k(x')p(x')dx' = Ak¢>k(X), (4) 

with eigenvalues Ak and a nonnegative weight function p(x), the a priori statistics 
of WI is simple. They are independent Gaussian variables which satisfy 18[wkwd = 
AkOkl' 

3 Prediction and Bayes error 

Usually, the posterior mean of 8(x) is chosen as the prediction 8(x) on a new point 
x based on a dataset Dn = (Xl, yI), ... , (xn ) Yn). Its explicit form can be easily 
derived by using the expansion 8(x) = Lk Wk¢>k(X), and the fact that for Gaussian 
random variables, their mean coincides with their most probable value. Maximizing 
the log posterior, with respect to the W k) one finds for the infinite dimensional vector 
W ~ (Wk)k=O, ... ,oo the result W = (u2J + AV) - 1 b where Vkl = L~=l ¢>k(Xi)¢>I(xd 
Akl = AkOkl and bk = L~=1 AkYi¢>k(xd Fixing the set of inputs xn, the Bayesian 
prediction error at a point x is given by 

c(xlxn) ~ 18 (8(x) - 8(x)f (5) 

Evaluating (5) yields, after some work, the expression 

c(xlxn) = u2 Tr { (u2 J + AV) -1 AU(x) } (6) 

with the matrix Ukl(X) = ¢>k(X)¢>I(X). U has the properties that ~ L~=1 U(Xi) = V 
and J dx p(x)U(x) = I. We define the Bayesian training error as the empirical 
average of the error (5) at the n datapoints of the training set and the Bayesian 
generalization error as the average error over all x weighted by the function p(x). 
We get 

.!. Tr { A V (I + A V / u 2 ) -1 } 
n 

Tr { A (I + A V / u2 ) -1 } . 

(7) 

(8) 



304 M. Opper and F Vivarelli 

4 Entropic error 

In order to understand the next type of error [9], we assume that the data arrive 
sequentially, one after the other. The predictive distribution after t - 1 training data 
at the new input Xt is the posterior expectation of the likelihood (1), Le. 

Let L t as the Bayesian average of the relative entropy (or Kullback Leibler diver­
gence) between the predictive distribution and the true distribution Pe from which 

the data were generated, Le. Lt = lE [D K L (Pel I P) ]. It can also be shown that 

L t = ! In (1 + ~g(X~f-l») . Hence, when the prediction error is small, we will have 

(9) 

The cumulative entropic error Ee (xn) is defined by summing up all the losses (which 
gives an integrated learning curve) from t = 1 up to time n and one can show that 

E(xn) = tLt(Xt,Dt-d = lEDKL (Pellpn) = ~Trln (I + AV/(12) (10) 
t=l 

where P; = rr=l Pe(yilxd and pn = lE[n~=l Pe(Yilxd]. The first equality may be 
found e.g. in [9], and the second follows from direct calculation. 

5 Bounds for fixed set of inputs 

In order to get bounds on (7),(8) and (10), we use a lemma, which has been used in 
Quantum Statistical Mechanics to get bounds on the free energy. The lemma (for 
the special function f(x) = e-.BX ) was proved by Sir Rudolf Peierls in 1938 [10]. In 
order to keep the paper self contained, we have included the proof in the appendix. 

Lemma 1 Let H be a real symmetric matrix and f a convex real function. Then 
Tr f(H) ~ L::k f(Hkk). 

By noting, that for concave functions the bound goes in the other direction, we 
immediately get 

< 
(12 L Ak Vk k 2 L AkVk (11) ct - <(1 
n (12 + Ak Vkk - (12 + nAkVk 

k k 

> L (12 Ak L (12 Ak (12) Cg 
(12 + Ak Vkk ~ (12 + nAkVk 

k k 

E{xn) < ~ LIn (1 + V kk A k/(12) ~ ~ LIn (1 + nVkAk/(12) 

k k 

(13) 

where in the rightmost inequalities, we assume that all n inputs are in a compact 
region V, and we define Vk = sUPxE'D 4>~(x). 1 

IThe entropic case may also be proved by Hadamard's inequality. 
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6 A verage case bounds 

Next, we assume that the input data are drawn at random and denote by ( ... ) 
the expectations with respect to the distribution. We do not have to assume inde­
pendence here, but only the fact that all marginal distributions for the n inputs are 
identical! Using Jensen's inequality 

Ct (Ct(xn)) ~ 0-2 2: )..kUk (14) 
k 0-2 + n)..kUk 

0-2 ).. 
cg (cg(xn)) ~ 2: 0-2 + n~ U (15) 

k k k 

1 
E (E(xn)) ~ 22: In (1 + nUk)..kj0-2) (16) 

k 

where now Uk = (¢'Hx)). This result is especially simple, when the weighting 
function p(x) is a probability density and the inputs have the marginal distribution 
p(x). In this case, we simply have Uk = 1. In this case, training and generalization 
error sandwich the bound 

2" )..k 
cb = 0- L- 2 \. 

k 0- + n/\k 
(17) 

We expect that the bound Cb becomes asymptotically exact, when n -+ 00. This 
should be intuitively clear, because training and generalization error approach each 
other asymptotically. This fact may also be understood from (9), which shows that 
the cumulative entropic error is within a factor of ! asymptotically equal to the 
cumulative generalization error. By integrating the lower bound (17) over n, we 
obtain precisely the upper bound on E with a factor 2, showing that upper and 
lower bounds show the same behaviour. 

7 Simulations 

We have compared our bounds with simulations for the average training error and 
generalization error for the case that the data are drawn from p( x). Results for the 
entropic error will be given elsewhere. 

We have specialized on the case, where the covariance kernel is of the RBF form 
C(x,x') = exp[(x - X')2j)..2], and p(x) = (27r)-~e-~X2, for which, following Zhu 
et al. (1997), the k-th eigenvalue of the spectrum (k = 0 ... 00) can be written 

as)..k = abk, where a = VC,b = c/)..2, c = 2(1+2j)..2+v'1+4/)..2)-I, and)" 

is the lengthscale of the process. We estimated the average generalisation error 
for each training set based on the exact analytical expressions (8) and (7) over 
the distribution of the datasets by using a Monte Carlo approximation. To begin 
with, let us consider x E R. We sampled the I-dimensIOnal input space generating 
100 training sets whose data points were normally distributed around zero with 
unit variance. For each generation, the expected training and generalisation errors 
for a GP have been evaluated using up to 1000 data points. We set the value 
of the lengthscale2 ).. to 0.1 and we let the noise level 0-2 assume several values 
(0-2 = 10-4 , 10-3 , 10-2 ,10-1 , 1). Figure 1 shows the results we obtained when 

2The value of the lengthscale ..\ has the effect of stretching the training and learning 
curves; thus the results of the experiments performed with different ..\ are qualitatively 
similar to those presented. 
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Figure 1: The Figures show the graphs of the training and learning curves with their 
bound fb(n) obtained with>. = 0.1; the noise level is set to 0.1 in Figure l(a) and to 
1 in Figure l(b). In all the graphs, ft and fg(n) are drawn by the solid line and their 
95% confidence interval is signed by the dotted curves. The bound fb(n) is drawn by the 
dash-dotted lines. 

(12 = 0.1 (Figure l(a)) and (12 = 1 (Figure l{b)). The bound €b{n) lies within the 
training and learning curves, being an upper bound for €t (n) and a lower bound for 
€g(n). This bound is tighter for the processes with higher noise level; in particular, 
for large datasets the error bars on the curves €t (n) and €g (n) overlap the bound 
€b(n). The curves €t{n), €g(n) and €b(n) approach zero as O(log(n)/n). 

Our bounds can also be applied to higher dimensions D > 1 using the covariance 

C{x, x') = exp (-llx - x'112 />.2) (18) 

for x, x' E RD. Obviously the integral kernel C is just a direct product of RBF 
kernels, one for each coordinate of x and x'. The eigenvalue problem (4) can be 
immediately reduced to the one for a single variable. Eigenfunctions and eigenvalues 
are simply products of those for the single coordinate problems. Hence, using a bit 
of combinatorics, the bound Cb can be written as 

_ 00 (k + D - 1) (12aD bk 

Cb - L k (72 + naDbk , 
k=O 

(19) 

where a and b have been defined above. We performed experiments when x E R2 
and x E R5 . The correlation lengths along each direction of the input space has 
been set to 1 and the noise level was (12 = 1.0. The graphs of the curves, with their 
error bars are reported in Figure 2{a) (for x E R2) and in Figure 2{b) (for x E R5 ). 

8 Discussion 

Based on the minimal requirements on training inputs and covariances, we con­
jecture that our bounds cannot be improved much without making more detailed 
assumptions on models and distributions. We can observe from the simulations 
that the tightness of the bound €b{n) depends on the dimension of the input space. 
In particular, for large datasets €b{n) is tighter for small dimension of the input 
space; Figure 2{a) shows this quite clearly since €b{n) overlaps the error bars of the 
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Figure 2: The Figures show the graphs of the training and learning curves with their 
bound Eb(n) obtained with the squared exponential covariance function with A = 1 and 
(72 = 1; the input space is R2 (Figure 2( a» and R 5 (Figure 2(b». In all the Figures, Et 

and Eg(n) are drawn by the solid line and their 95% confidence interval is signed by the 
dotted curves. The bound Eb(n) is drawn by the dash-dotted lines. 

training and learning curves for large n. Numerical simulations performed using 
modified Bessel covariance functions of order r (describing random processes r - 1 
time mean square differentiable) have shown that the bound €b(n} becomes tighter 
for smoother processes. 

Acknowledgement: We are grateful for many inspiring discussions with C.K.I. 
Williams. M.O. would like to thank Peter Sollich for his conjecture that (17) is an 
exact lower bound on the generalization error, which motivated part of this work. 
F. V. was supported by a studentship of British Aerospace. 

9 Appendix: Proof of the lemma 1 

Let {~(j)} be a complete set of orthonormal eigenvectors and {Ei} the correspond-
(i) (i) ing set of eigenvalues of H, i.e. we have the properties Ll Hkl~l = Ei~k , 

(i) (i ) (i) (j) 
Li ~k ~l = 8kl , and Lk ~k ~k = 8ij . Then we get 

Tr f(H} L f(Ed = L L(~~i)}2 f(Ei } 
i k i 

> ~f (~(~~»2Ei) ~ ~f (~~~i) ~H .. ~fi») 
= Lf(Hkk} 

k 

The second equality follows from orthonormality, because Lk(~~i)}2 = 1. The 

inequality uses the fact that by completeness, for any k, we have Li(~~i)}2 = 1 

and we may regard the (~~i)}2 as probabilities, such that by convexity, Jensen's 
inequality can be used. After using the eigenvalue equation, the sum over i was 
carried out with the help of the completeness relation, in order to obtain the last 
line. 
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