
Learning Instance-Independent Value Functions
to Enhance Local Search

Robert Moll Andrew G. Barto Theodore J. Perkins
Department of Computer Science

University of Massachusetts, Amherst, MA 01003

Richard S. Sutton
AT&T Shannon Laboratory, 180 Park Avenue, Florham Park, NJ 07932

Abstract

Reinforcement learning methods can be used to improve the performance
of local search algorithms for combinatorial optimization by learning
an evaluation function that predicts the outcome of search. The eval
uation function is therefore able to guide search to low-cost solutions
better than can the original cost function. We describe a reinforcement
learning method for enhancing local search that combines aspects of pre
vious work by Zhang and Dietterich (1995) and Boyan and Moore (1997,
Boyan 1998). In an off-line learning phase, a value function is learned
that is useful for guiding search for multiple problem sizes and instances.
We illustrate our technique by developing several such functions for the
Dial-A-Ride Problem. Our learning-enhanced local search algorithm ex
hibits an improvement of more then 30% over a standard local search
algorithm.

1 INTRODUCTION

Combinatorial optimization is of great importance in computer science, engineering, and
operations research. We investigated the use of reinforcement learning (RL) to enhance tra
ditionallocal search optimization (hillclimbing). Since local search is a sequential decision
process. RL can be used to improve search performance by learning an evaluation func
tion that predicts the outcome of search and is therefore able to guide search to low-cost
solutions better than can the original cost function.

Three approaches to using RL to improve combinatorial optimization have been described

1018 R. Moll, A. G. Barto, T. J Perkins and R. S. Sutton

in the literature. One is to learn a value function over multiple search trajectories of a single
problem instance. As the value function improves in its predictive accuracy, its guidance
enhances additional search trajectories on the same instance. Boyan and Moore's STAGE
algorithm (Boyan and Moore 1997, Boyan 1998) falls into this category, showing excellent
performance on a range of optimization problems. Another approach is to learn a value
function off-line and then use it over mUltiple new instances of the same problem. Zhang
and Dietterich's (1995) application of RL to a NASA space shuttle mission scheduling
problem takes this approach (although it does not strictly involve local search as we define
it below). A key issue here is the need to normalize state representations and rewards so
that trajectories from instances of different sizes and difficulties yield consistent training
data. In each of the above approaches, a state of the RL problem is an entire solution (e.g.,
a complete tour in a Traveling Salesman Problem (TSP)) and the actions select next solu
tions from the current solutions' neighborhoods. A third approach, described by Bertsekas
and Tsitsiklis (1996), uses a learned value function for guiding the direct construction of
solutions rather than for moving between them.

We focused on combining aspects of first two of these approaches with the goal of carefull y
examining how well the TD(,\) algorithm can learn an instance-independent value function
for a given problem to produce an enhanced local search algorithm applicable to all in
stances of that problem. Our approach combines an off-line learning phase with STAGE's
alternation between using the learned value function and the original cost function to guide
search. We present an extended case study of this algorithm's application to a somewhat
complicated variant of TSP known as the Dial-A-Ride Problem, which exhibits some of
the non-uniform structure present in real-world transportation and logistics problems.

2 ENHANCING LOCAL SEARCH

The components of local search for combinatorial optimization are 1) a finite set ofJeasible
solutions, S; 2) an objective, or cost,function, C : S -4 ~; and 3) a neighborhood Junction,
A : S -4 P(S) (the power set of S). Local search starts with an initial feasible solution, So,
ofa problem instance and then at each step k = 1,2, ... , it selects a solution Sk E A(Sk-d
such that C(Sk) < c(sk-d. This process continues until further local improvement is
impossible, and the current local optimum is returned. If the algorithm always moves to the
first less expensive neighboring solution encountered in an enumeration of a neighborhood,
it is called first improvement local search.

Following Zhang and Dietterich (1995) and Boyan and Moore (1997), we note that local
search can be viewed as a policy o£' a Markov decision process (MDP) with state set S
and action sets A(s), S E S, where an action is identified with the neighboring solution
selected. Local search selects actions which decrease the value of c, eventually absorbing
at a state with a locally minimum cost. But C is not the optimal value function for the
local search problem, whose objective is to reach the lowest-cost absorbing state (possibly
including some tradeoff involving the number of search steps required to do so). RL used
with a function approximator can learn an approximate optimal value function, V, thereby
producing an enhanced search algorithm that is locally guided by V instead of by c. One
way to do this is to give a small penalty, E, for each transition and a terminal reward upon
absorption that is inversely related to the cost of the terminal state. Maximizing the ex
pected undiscounted return accomplishes the desired tradeoff (determined by the value of
E) between quality of final solution and search time (cf. Zhang and Dietterich, 1995).

Since each instance of an optimization problem corresponds to a different MDP, a value

Learning Instance-Independent Value Functions to Enhance Local Search 1019

function V learned in this way is instance-specific. Whereas Boyan's STAGE algorithm in
effect uses such a V to enhance additional searches that start from different states of the
same instance, we are interested in learning a V off-line, and then using it for arbitrary in
stances of the given problem. In this case, the relevant sequential decision problem is more
complicated than a single-instance MDP since it is a summary of aspects of all problem
instances. It would be extremely difficult to make the structure of this process explicit, but
fortunately RL requires only the generation of sample trajectories, which is relatively easy
in this case.

In addition to their cost, secondary characteristics of feasible solutions can provide valuable
information for search algorithms. By adjusting the parameters of a function approximation
system whose inputs are feature vectors describing feasible solutions, an RL algorithm can
produce a compact representation of V. Our approach operates in two distinct phases. In
the learning phase, it learns a value function by applying the TD(A) algorithm to a number
of randomly chosen instances of the problem. In the performance phase, it uses the result
ing value function, now held fixed, to guide local search for additional problem instances.
This approach is in principle applicable to any combinatorial optimization problem, but we
describe its details in the context of the Dial-A-Ride problem.

3 THE DIAL-A-RIDE PROBLEM

The Dial-a-Ride Problem (DARP) has the following formulation. A van is parked at a
terminal. The driver receives calls from N customers who need rides. Each call identifies
the location of a customer, as well as that customer's destination. After the calls have been
received, the van must be routed so that it starts from the terminal, visits each pick-up
and drop-off site in some order, and then returns to the terminal. The tour must pick up
a passenger before eventually dropping that passenger off. The tour should be of minimal
length. Failing this goal-and DARP is NP-complete, so it is unlikely that optimal DARP
tours will be found easily-at least a good quality tour should be constructed. We assume
that the van has unlimited capacity and that the distances between pick-up and drop-off
locations are represented by a symmetric Euclidean distance matrix.

We use the notation
012-13 - 3 - 2

to denote the following tour: "start at the terminal (0), then pick up 1, then 2, then drop
off 1 (thus: - 1), pick up 3, drop off 3, drop off 2 and then return to the terminal (site 0)."
Given a tour s, the 2-opt neighborhood of s, A2(S), is the set oflegal tours obtainable from
s by subsequence reversal. For example, for the tour above, the new tour created by the
following subsequence reversal

01 / 2 -13 / -3 - 2 --. 013 -12 -3-2

is an element of A2 (T). However, this reversal

012 / -13 -3/ -2 --. 012 - 33 - 1 - 2

leads to an infeasible tour, since it asserts that passenger 3 is dropped off first, then picked
up. The neighborhood structure of DARP is highly non-uniform, varying between A2
neighborhood sizes of O(N) and O(N2).

Let s be a feasible DARP tour. By 2-opt(s) we mean the tour obtained by first-improvement
local search using the A2 neighborhood structure (presented in a fixed, standard enumer
ation), with tour length as the cost function. As with TSP, there is a 3-opt algorithm for

1020 R. Moll. A. G. Barto. T J Perkins and R. S. Sutton

DARP, where a 3-opt neighborhood A3(S) is defined and searched in a fixed, systematic
way, again in first-improvement style. This neighborhood is created by inserting three
rather than two "breaks" in a tour. 3-opt is much slower than 2-opt, more than 100 times
as slow for N = 50, but it is much more effective, even when 2-opt is given equal time to
generate multiple random starting tours and then complete its improvement scheme.

Psaraftis (1983) was the first to study 2-opt and 3-opt algorithms for DARP. He studied
tours up to size N = 30, reporting that at that size, 3-opt tours are about 30% shorter
on average than 2-opt tours. In theoretical studies of DARP, Stein (1978) showed that for
sites placed in the unit square, the globally optimal tour for problem size N has a length
that asymptotically approaches 1.02-/2N with probability 1 as N increases. This bound
applies to our study-although we multiply position coordinates by 100 and then truncate
to get integer distance matrices-and thus, for example, a value of 1020 gives us a baseline
estimate of the globally optimal tour cost for N = 50. Healy and Moll (1995) considered
using a secondary cost function to extend local search on DARP. In addition to primary
cost (tour length) they considered as a secondary cost the ratio of tour cost to neighborhood
size, which they called cost-hood. Their algorithm employed a STAGE-like alternation
between these two cost functions: starting from a random tour s, it first found 20pt(s);
then it performed a limited local search using the cost-hood function, which had the effect
of driving the search to a new tour with a decent cost and a large neighborhood. These
alternating processes were repeated until a time bound was exhausted, at which point the
least cost tour seen so far was reported as the result of the search. This technique worked
well, with effectiveness falling midway between that of 2-opt and 3-opt.

4 ENHANCED 2-0PT FOR DARP

We restrict our description to a learning method for enhancing 2-opt for DARP, but the
same method can be used for other problems. In the learning phase, after initializing the
function approximator, we conduct a number training episodes until we are satisfied that the
weights have stabilized. For each episode k, we select a problem size N at random (from a
predetermined range) and generate a random DARP instance of that size, i.e., we generate
a symmetric Euclidean distance matrix by generating random points in the plane inside the
square bounded by the points (0,0), (0,100), (100,100) and (100,0). We set the "terminal
site" to point (50,50) and the initial tour to a randomly generated feasible tour. We then
conduct a modified first-improvement 2-opt local search using the negated current value
function, - Vk, as the cost function. The modification is that termination is controlled by a
parameter E > ° as follows: the search terminates at a tour s if there is no s' E A(s) such
that Vk (s') > Vk (s) + E. In other words, a step is taken only if it produces an improvement
of at least E according to the current value function. The episode returns a final tour sf.
We run one unmodified 2-opt local search, this time using the DARP cost function c (tour
length), from sf to compute 2-opt(sf). We then apply a batch version of undiscounted
TD(A) to the saved search trajectory using the following immediate rewards: -E for each
transition, and -c(2-opt(sf)) / Stein N as a terminal reward, where Stein N is the Stein
estimate for instance size N. Normalization by SteinN helps make the terminal reward
consistent across instance sizes. At the end of this learning phase, we have a final value
function, V. V is used in the performance phase, which consists of applying the modified
first-improvement 2-opt local search with cost function - Von new instances, followed by
a 2-opt application to the resulting tour.

The results described here were obtained using a simple linear approximator with a bias

Learning Instance-Independent Value Functions to Enhance Local Search 1021

Table 1: Weight Vectors for Learned Value Functions.

Value
Function Weight Vector

v < .951, .033, .0153 >
V20 < .981, .019, .00017 >
V30 < .984, .014, .0006 >
V40 < .977, .022, .0009 >
Vso < .980, .019, .0015 >
V60 < .971 , .022 , .0069 >

weight and features developed from the following base features: 1) normcost N (s) =
c(s)jSteinN ; 2) normhoodN = [A(s) [jaN' where aN is a normalization coefficient
defined below; and 3) normprox N, which considers a list of the N j 4 least expensive
edges of the distance matrix, as follows . Let e be one of the edges, with endpoints u
and v. The normprOXN feature examines the current tour, and counts the number of
sites on the tour that appear between u and v . normprOXN is the sum of these counts
over the edges on the proximity list divided by a normalizing coefficient bN described
below. Our function approximator is then give by Wo +normcostN j(normhoodN)2Wl +
normproXN j(normhoodN)2W2 . The coefficients aN and bN are the result of running
linear regression on randomly sampled instances of random sizes to determine coefficients
that will yield the closest fit to a constant target value for normalized neighborhood size
and proximity. The results were aN = .383N2 + .28.5N - 244.5 and bN = .43N2 +
.736N - 68 .9.jN + 181.75. The motivation for the quotient features comes from Healy
and Moll (1995) who found that using a similar term improved 2-opt on DARP by allowing
it to sacrifice cost improvements to gain large neighborhoods .

5 EXPERIMENTAL RESULTS

Comparisons among algorithms were done at five representative sizes N = 20, 30, 40, 50,
and 60. For the learning phase, we conducted approximately 3,000 learning episodes, each
one using a randomly generated instance of size selected randomly between 20 and 60
inclusive. The result of the learning phase was a value function V . To assess the influence
of this multi-instance learning, we also repeated the above learning phase 5 times, except
that in each we held the instance size fixed to a different one of the 5 representative sizes,
yielding in each case a distinct value function VN , where N is the training instance size.
Table 1 shows the resulting weight vector < bias weight, costhood N weight, proximitYN
weight >. With the exception of the proximity,v weight, these are quite consistent across
training instance size. We do not yet understand why training on multiple-sized instances
led to this pattern of variation.

Table 2 compares the tour quality found by six different local search algorithms. For the
algorithms using learned value functions, the results are for the performance phase after
learning using the algorithm listed. Table entries are the percent by which tour length
exceeded SteinN for instance size N averaged over 100 instances of each representative
size. Thus, 2-opt exceeded Stein20 = 645 on the 100 instance sample set by an average of
42%. The last row in the table gives the results of using the five different value functions
VN , for the corresponding N . Results for TDC.8) are shown because they were better than

1022 R. Moll, A. G. Barto, T J. Perkins and R. S. Sutton

Table 2: Comparison of Six Algorithms at Sizes N = 20, 30, 40, 50, 60. Entries are
percentage above SteinN averaged over 100 random instances of size N.

Algorithm N=20 N=30 N=40 N=50 N=60
2-opt 42 47 53 56 60
3-opt 8 8 11 10 10
TD(I) 28 31 34 39 40
TD(.8) E = 0 27 30 35 37 39
TD(.8) E = .Ol/N 29 35 37 41 44
TD(.8) E = 0, VN 29 30 32 36 40

Table 3: Average Relative Running Times. Times for 2-opt are in seconds; other entries
give time divided by 2-opt time.

Algorithm N=20 N=30 N=40 N=50 N=60
2-opt .237 .770 1.09 1.95 3.55
3-opt 32 45 100 162 238
TD(.8) E = 0 3.2 3.4 6.3 6.9 7.1
TD(.8) E = .01/ N 2.2 1.8 2.6 2.9 3.0

those for other values of .A . The learning-enhanced algorithms do well against 2-opt when
running time is ignored, and indeed TD(.8), E = 0, is about 35% percent better (according
to this measure) by size 60. Note that 3-opt clearly produces the best tours, and a non-zero
E for TD(.8) decreases tour quality, as expected since it causes shorter search trajectories.

Table 3 gives the relative running times of the various algorithms. The raw running times
for 2-opt are given in seconds (Common Lisp on 266 Mhz Mac G-3) at each of five sizes in
the first row. Subsequent rows give approximate running times divided by the correspond
ing 2-opt running time. Times are averages over 30 instances. The algorithms using learned
value functions are slower mainly due to the necessity to evaluate the features. Note that
TD(.8) becomes significantly faster with E non-zero.

Finally. Table 4 gives the relative performance of seven algorithms. normalized for time,
including the STAGE algorithm using linear regression with our features. We generated
20 random instances at each of the representative sizes, and we allowed each algorithm
to run for the indicated amount of time on each instance. If time remained when a local
optimum was reached, we restarted the algorithm at that point, except in the case of 2-opt,
where we selected a new random starting tour. The restarting regime for the learning
enhanced algorithms is the regime employed by STAGE. Each algorithm reports the best
result found in the allotted time, and the chart reports the averages of these values across the
20 instances. Notice that the algorithms that take advantage of extensive off-line learning
significantly outperform the other algorithms, including STAGE, which relies on single
instance learning.

6 DISCUSSION

We have presented an extension to local search that uses RL to enhance the local search
cost function for a particular optimization problem. Our method combines aspects of work

Learning Instance-Independent Value Functions to Enhance Local Search 1023

Table 4: Performance Comparisons, Equalized for Running Time.

Size and Running Time
N=20 N=30 N=40 N=50 N=60

Algorithm 10 sec 20 sec 40 sec 100 sec 150 sec
2-opt 16 29 28 30 38
STAGE 18 20 32 24 27
TD(.8) E = 0 12 13 16 22 20
TD(.8) E = .011N 13 11 14 24 28

by Zhang and Dietterich (1995) and Boyan and Moore (1997; Boyan 1998). We have
applied our method to a relatively pure optimization problem-DARP-which possesses
a relatively consistent structure across problem instances. This has allowed the method to
learn a value function that can be applied across all problem instances at all sizes. Our
method yields significant improvement over a traditional local search approach to DARP
on the basis of a very simple linear approximator, built using a relatively impoverished set
of features. It also improves upon Boyan and Moore's (1997) STAGE algorithm in our
example problem, benefiting from extensive off-line learning whose cost was not included
in our assessment. We think this is appropriate for some types of problems; since it is a
one-time learning cost, it can be amortized over many future problem instances of practical
importance.

Acknowledgement

We thank Justin Boyan for very helpful discussions of this subject. This research was sup
ported by a grant from the Air Force Office of Scientific Research, Bolling AFB (AFOSR
F49620-96-1-0254) .

References

Boyan, J. A. (1998). Learning Evaluation Functions for Global Optimization. Ph .D. Thesis,
Carnegie-Mellon University.

Boyan, J. A., and Moore, A. W. (1997). Using Prediction to Improve Combinatorial Opti
mization Search. Proceedings of AI-STATS-97.

D. P. Bertsekas, D. P., and Tsitsiklis, 1. N. (1996). Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA.

Healy, P., and Moll, R. (1995). A New Extension to Local Search Applied to the Dial-A
Ride Problem. European Journal of Operations Research, 8: 83-104.

Psaraftis, H. N. (1983). ~-interchange Procedures for Local Search in a Precedence
Constrained Routing Problem. European Journal of Operations Research, 13:391-402.

Zhang, W. and Dietterich, T. G. (1995). A Reinforcement Learning Approach to Job-Shop
Scheduling. In Proceedings of the Fourteenth International Joint Conference on ArtifiCial
Intelligence , pp. 1114-1120. Morgan Kaufmann, San Francisco.

Stein, D. M. (1978). An Asymptotic Probabilistic Analysis of a Routing Problem. Math.
Operations Res. J., 3: 89-101.

