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Principal curves have been defined as "self consistent" smooth curves 
which pass through the "middle" of a d-dimensional probability distri­
bution or data cloud. Recently, we [1] have offered a new approach by 
defining principal curves as continuous curves of a given length which 
minimize the expected squared distance between the curve and points of 
the space randomly chosen according to a given distribution. The new 
definition made it possible to carry out a theoretical analysis of learning 
principal curves from training data. In this paper we propose a practical 
construction based on the new definition. Simulation results demonstrate 
that the new algorithm compares favorably with previous methods both 
in terms of performance and computational complexity. 

1 Introduction 

Hastie [2] and Hastie and Stuetzle [3] (hereafter HS) generalized the self consistency prop­
erty of principal components and introduced the notion of principal curves. Consider a 
d-dimensional random vector X = (X(I), ... ,X(d)) with finite second moments, and let 
f{t) = (II (t), ... ,!d(t)) be a smooth curve in 1{,d parameterized by t E 1{,. For any x E 1{,d 
let tf(x) denote the parameter value t for which the distance between x and f(t) is mini­
mized. By the HS definition, f(t) is a principal curve if it does not intersect itself and is 
self consistent, that is, f(t) = E(Xltr(X) = t). Intuitively speaking, self-consistency means 
that each point of f is the average (under the distribution of X) of points that project there. 
Based on their defining property HS developed an algorithm for constructing principal 
curves for distributions or data sets, and described an application in the Stanford Linear 
Collider Project [3]. 
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Principal curves have been applied by Banfield and Raftery [4] to identify the outlines of 
ice floes in satellite images. Their method of clustering about principal curves led to a fully 
automatic method for identifying ice floes and their outlines. On the theoretical side, Tib­
shirani [5] introduced a semiparametric model for principal curves and proposed a method 
for estimating principal curves using the EM algorithm. Recently, Delicado [6] proposed 
yet another definition based on a property of the first principal components of multivari­
ate normal distributions. Close connections between principal curves and Kohonen's self­
organizing maps were pointed out by Mulier and Cherkas sky [7]. Self-organizing maps 
were also used by Der et al. [8] for constructing principal curves. 

There is an unsatisfactory aspect of the definition of principal curves in the original HS 
paper as well as in subsequent works. Although principal curves have been defined to be 
nonparametric, their existence for a given distribution or probability density is an open 
question, except for very special cases such as elliptical distributions. This also makes it 
difficult to theoretically analyze any learning schemes for principal curves. 

Recently, we [1] have proposed a new definition of principal curves which resolves this 
problem. In the new definition, a curve f" is called a principal curve of length L for X if f" 
minimizes ~(f) = E [infr IIX - f(t) 112] = EIIX - f(tf(X)) 11 2, the expected squared distance 
between X and the curve, over all curves of length less than or equal to L. It was proved in 
[1] that for any X with finite second moments there always exists a principal curve in the 
new sense. 

A theoretical algorithm has also been developed to estimate principal curves based on a 
common model in statistical learning theory (e.g. see [9]). SUJ'pose that the distribution of 
X is concentrated on a closed and bounded convex set K C 1l ,and we are given n training 
points XI, ... ,Xn drawn independently from the distribution of X. Let S denote the family 
of curves taking values in K and having length not greater than L. For k :2: 1 let Sk be the 
set of polygonal (piecewise linear) curves in K which have k segments and whose lengths 
do not exceed L. Let 

~(X,f) = minllx - f(t)112 
r 

(1) 

denote the squared distance between x and f. For any f E S the empirical squared er­
ror of f on the training data is the sample average ~n(f) = * L:':I ~(Xi' f). Let the 
theoretical algorithm choose an fk ,n E Sk which minimizes the empirical error, i.e, let 
fk,n = arg minfEsk ~n (f). It was shown in [1] that if k is chosen to be proportional to n I /3 , 
then the expected squared loss of the empirically optimal polygonal curve with k segments 
and length at most L converges, as n -+ 00, to the squared loss of the principal curve of 
length L at a rate ~(fk,n) - ~(f") = O(n- 1/ 3 ). 

Although amenable to theoretical analysis, the algorithm in [1] is computationally burden­
some for implementation. In this paper we develop a suboptimal algorithm for learning 
principal curves. This practical algorithm produces polygonal curve approximations to the 
principal curve just as the theoretical method does, but global optimization is replaced by 
a less complex iterative descent method. We give simulation results and compare our algo­
rithm with previous work. In general, on examples considered by HS the performance of 
the new algorithm is comparable with the HS algorithm, while it proves to be more robust 
to changes in the data generating model. 

2 A Polygonal Line Algorithm 

Given a set of data points ~ = {XI, ... ,xn} C 1ld, the task of finding the polygonal curve 
with k segments and length L which minimizes ~ Li=1 ~(Xi' f) is computationally difficult. 
We propose a suboptimal method with reasonable complexity. The basic idea is to start 
with a straight line segment fl ,n (k = 1) and in each iteration of the algorithm to increase 
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the number of segments by one by adding a new vertex to the polygonal curve fk,n produced 
by the previous iteration. After adding a new vertex, the positions of all vertices are updated 
in an inner loop. 
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Figure I: The curves fk,n produced by the polygonal line algorithm for n = 100 data points. 
The data was generated by adding independent Gaussian errors to both coordinates of a 
point chosen randomly on a half circle. (a) fl,n, (b) f2,n, (c) f4 ,n, (d) fU,n (the output of the 
algorithm). 
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y 

END 

Figure 2: The flow chart of the polygonal line algorithm. 

The inner loop consists of a projection step and an optimization step. In the projection 
step the data points are partitioned into "Voronoi regions" according to which segment or 
vertex they project. In the optimization step the new position of each vertex is determined 
by minimizing an average squared distance criterion penalized by a measure of the local 
curvature. These two steps are iterated until convergence is achieved and An is produced. 
Then a new vertex is added. 

The algorithm stops when k exceeds a threshold c(n,~) . This stopping criterion is based 
on a heuristic complexity measure, determined by the number segments k, the number of 
data points n, and the average squared distance ~n(fk,n) . 

THE INITIALIZATION STEP. To obtain fl,n, take the shortest segment of the first principal 
component line which contains all of the projected data points. 

THE PROJECTION STEP. Let f denote a polygonal curve with vertices VI , . . . ,Vk+1 and 
closed line segments SI , ... ,Sk, such that Si connects vertices Vi and Vi+l. In this step the 
data set Xn is partitioned into (at most) 2k + 1 disjoint sets VI, .. ' ,Vk+1 and SI,'" ,Sk, 
the Voronoi regions of the vertices and segments of f, in the following manner. For any 
x E 1(d let ~(x, Si) be the squared distance from x to Si (see definition (1», and let ~(x, Vi) = 
IIX-ViI12. Then let 

Vi = {x E Xn: ~(x, Vi) = ~(x,f), ~(x, Vi) < ~(x, vm), m = 1, ... ,i -I}. 

Upon setting V = utl Vi, the Si sets are defined by 

Si = {x E Xn: x ¢ V, ~(X, Si) = ~(x,f) , ~(X,Si) < ~(x,sm) , m = 1, . .. ,i -I}. 

The resulting partition is illustrated in Figure 3. 
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Figure 3: The Voronoi partition induced by the vertices and segments of f 

THE VERTEX OPTIMIZATION STEP. In this step we iterate over the vertices, and relocate 
each vertex while all the others are kept fixed. For each vertex, we minimize ~n(Vi) + 
APP(Vi) , a local average squared distance criterion penalized by a measure of the local 
curvature by using a gradient (steepest descent) method. 

The local measure of the average squared distance is calculated from the data points which 
project to Vi or to the line segment(s) starting at Vi (see Projection Step). Accordingly, 
let O+(Vi) = LXESi~(X,Si)' O-(Vi) = LXESi-l ~(X,Si-l), and V(Vi) = LXEVi~(X, Vi). Now 
define the local average squared distance as a function of Vi by 

V(Vi) + O+(Vi) 

IVil + ISil 

O-(Vi) + V(Vi) + O+(Vi) 

lSi-Ii + IVil + ISil 

O-(Vi) + V(Vi) 

lSi-II + IV;! 

if i = 1 

ifl < i < k+ 1 (2) 

ifi = k+ 1. 

In the theoretical algorithm the average squared distance ~n(x,f) is minimized subject to 
the constraint that f is a polygonal curve with k segments and length not exceeding L. One 
could use a Lagrangian formulation and attempt to find a new position for Vi (while all 
other vertices are fixed) such that the penalized squared error ~n(f) + Al(f)2 is minimum. 
However, we have observed that this approach is very sensitive to the choice of A, and 
reproduces the estimation bias of the HS algorithm which flattens the curve at areas of high 
curvature. So, instead of directly penalizing the lengths of the line segments, we chose 
to penalize sharp angles to obtain a smooth curve solution. Nonetheless, note that if only 
one vertex is moved at a time, penalizing sharp angles will indirectly penalize long line 
segments. At inner vertices Vi, 3 ::; i ::; k - 1 we penalize the sum of the cosines of the 
three angles at vertices Vi-I, Vi, and Vi+l. The cosine function was picked because of 
its regular behavior around 1t, which makes it especially suitable for the steepest descent 
algorithm. To make the algorithm invariant under scaling, we multiply the cosines by the 
squared radius of the data, that is, r = 1/2maxxEx",YEx"lIx- YII. At the endpoints and at 
their immediate neighbors (Vi, i = 1,2,k,k+ 1), where penalizing sharp angles does not 
translate to penalizing long line segments, the penalty on a nonexistent angle is replaced 
by a direct penalty on the squared length of the first (or last) segment. Formally, let "Ii 
denote the angle at vertex Vi, let 1t(Vi) = ,2(1 + COS'Yi) , let Jl+(Vi) = IIVi - Vi+111 2, and let 
Jl- (Vi) = IIVi - Vi_111 2• Then the penalty at vertex Vi is 

! 2Jl+(Vi) + 1t(Vi+l) 
Jl-(Vi) + 1t(Vi) + 1t(Vi+l) 

P(Vi) = 1t(Vi-I) +1t(Vi) +1t(Vi+l) 
1t(Vi-I) + 1t(Vi) + Jl+(Vi) 
1t(Vi-l) + 2Jl-(Vi) 

ifi= 1 
if i = 2 
if2::; i::; k-l 
if i = k 
if i = k+ 1. 
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One important issue is the amount of smoothing required for a given data set. In the HS 
algorithm one needs to set the penalty coefficient of the spline smoother, or the span of 
the scatterplot smoother. In our algorithm, the corresponding parameter is the curvature 
penalty factor Ap. If some a priori knowledge about the distribution is available, one can 
use it to determine the smoothing parameter. However in the absence of such knowledge, 
the coefficient should be data-dependent. Intuitively, Ap should increase with the number 
of segments and the size of the average squared error, and it should decrease with the data 
size. Based on heuristic considerations and after carrying out practical experiments, we 
set Ap = A~n-l/3~n(fk ,n)1/2r-l, where A'p is a parameter of the algorithm, and can be kept 
fixed for substantially different data sets. 

ADDING A NEW VERTEX. We start with the optimized fk ,n and choose the segment that 
has the largest number of data points projecting to it. If more then one such segment exists, 
we choose the ~n~~.st ~ne. ~e I?~dPoint of this seg~ent is selecte~ as the new vertex. 
Formally, let! - tl. IS,I ~ IS;I, ) - 1, ... ,k}, and f - argmaxiEI Ilv, - v,+lli. Then the 
new vertex is Vnew = (ve + vl+l)/2. 
STOPPING CONDITION. According to the theoretical results of [1], the number of seg­
ments k should be proportional to n1/3 to achieve the O(n1/3) convergence rate for the ex­
pected squared distance. Although the theoretical bounds are not tight enough to determine 
the optimal number of segments for a given data size, we found that k '" n1/ 3 also works 
in practice. To achieve robustness we need to make k sensitive to the average squared dis­
tance. The stopping condition blends these two considerations. The algorithm stops when 
k exceeds c(n,~n(fk,n)) = Aknl/3~n(fk,n)-1/2r. 

COMPUTATIONAL COMPLEXITY. The complexity of the inner loop is dominated by the 
complexity of the projection step, which is O(nk). Increasing the number of segments by 
one at a time (as described in Section 2), and using the stopping condition of Section 2, the 
computational complexity of the algorithm becomes O( n5/ 3). This is slightly better than the 
O(n2) complexity of the HS algorithm. The complexity can be dramatically decreased if, 
instead of adding only one vertex, a new vertex is placed at the midpoint of every segment, 
giving O(n4/3logn) , or if k is set to be a constant, giving O(n). These simplifications work 
well in certain situations, but the original algorithm is more robust. 

3 Experimental Results 

We have extensively tested our algorithm on two-dimensional data sets. In most experi­
ments the data was generated by a commonly used (see, e.g., [3) [5] [7]) additive model 
X = Y + e, where Y is uniformly distributed on a smooth planar curve (hereafter called the 
generating curve) and e is bivariate additive noise which is independent of Y. 

Since the "true" principal curve is not known (note that the generating curve in the model 
X = Y + e is in general not a principal curve either in the HS sense or in our definition), it 
is hard to give an objective measure of performance. For this reason, in what follows, the 
performance is judged subjectively, mainly on the basis of how closely the resulting curve 
follows the shape of the generating curve. 

In general, in simulation examples considered by HS the performance of the new algorithm 
is comparable with the HS algorithm. Due to the data-dependence of the curvature penalty 
factor and the stopping condition, our algorithm turns out to be more robust to alterations in 
the data generating model, as well as to changes in the parameters of the particular model. 

We use varying generating shapes, noise parameters, and data sizes to demonstrate the ro­
bustness of the polygonal line algorithm. All of the plots in Figure 4 show the generating 
curve (Generator Curve), the curve produced by our polygonal line algorithm (Principal 
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Curve), and the curve produced by the HS algorithm with spline smoothing (HS Principal 
Curve), which we have found to perform better than the HS algorithm using scatterplot 
smoothing. For closed generating curves we also include the curve produced by the Ban­
field and Raftery (BR) algorithm [4], which extends the HS algorithm to closed curves (BR 
Principal Curve). The two coefficients of the polygonal line algorithm are set in all exper­
iments to the constant values Ak = 0.3 and A~ = 0.1. All plots have been normalized to fit 
in a 2 x 2 square. The parameters given below refer to values before this normalization. 
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Figure 4: (a) The Circle Example: the BR and the polygonal line algorithm show less 
bias than the HS algorithm. (b) The Half Circle Example: the HS and the polygonal line 
algorithms produce similar curves. (c) and (d) Transformed Data Sets: the polygonal line 
algorithm still follows fairly closely the "distorted" shapes. (e) Small Noise Variance and 
(f) Large Sample Size: the curves produced by the polygonal line algorithm are nearly 
indistinguishable from the generating curves. 

In Figure 4( a) the generating curve is a circle of radius r = 1, and e = (el' e2) is a zero mean 
bivariate uncorrelated Gaussian with variance E(er) = 0.04, i = 1,2. The performance of 
the three algorithms (HS, BR, and the polygonal line algorithm) is comparable, although 
the HS algorithm exhibits more bias than the other two. Note that the BR algorithm [4] has 
been tailored to fit closed curves and to reduce the estimation bias. In Figure 4(b), only half 
of the circle is used as a generating curve and the other parameters remain the same. Here, 
too, both the HS and our algorithm behave similarly. 

When we depart from these usual settings the polygonal line algorithm exhibits better be­
havior than the HS algorithm. In Figure 4(c) the data set of Figure 4(b) was linearly trans­
formed using the matrix (j'.~ ?:~). In Figure 4( d) the transformation (- I:g =b:~) was used. 
The original data set was generated by an S-shaped generating curve, consisting of two 
half circles of unit radii, to which the same Gaussian noise was added as in Figure 4(b). In 
both cases the polygonal line algorithm produces curves that fit the generator curve more 
closely. This is especially noticeable in Figure 4(c) where the HS principal curve fails to 
follow the shape of the distorted half circle. 
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There are two situations when we expect our algorithm to perform particularly well. If the 
distribution is concentrated on a curve, then according to both the HS and our definitions 
the principal curve is the generating curve itself. Thus, if the noise variance is small, 
we expect both algorithms to very closely approximate the generating curve. The data in 
Figure 4(e) was generated using the same additive Gaussian model as in Figure 4(a), but 
the noise variance was reduced to E(er) = 0.001 for i = 1,2. In this case we found that the 
polygonal line algorithm outperformed both the HS and the BR algorithms. 

The second case is when the sample size is large. Although the generating curve is not 
necessarily the principal curve of the distribution, it is natural to expect the algorithm to 
well approximate the generating curve as the sample size grows. Such a case is shown in 
Figure 4(f), where n = 10000 data points were generated (but only a small subset of these 
was actually plotted). Here the polygonal line algorithm approximates the generating curve 
with much better accuracy than the HS algorithm. 

The Java implementation of the algorithm is available at the WWW site 
http://www.cs.concordia.ca/-grad/kegl/pcurvedemo.html 

4 Conclusion 

We offered a new definition of principal curves and presented a practical algorithm for 
constructing principal curves for data sets. One significant difference between our method 
and previous principal curve algorithms ([3],[4], and [8]) is that, motivated by the new 
definition, our algorithm minimizes a distance criterion (2) between the data points and the 
polygonal curve rather than minimizing a distance criterion between the data points and the 
vertices of the polygonal curve. This and the introduction of the data-dependent smoothing 
factor Ap made our algorithm more robust to variations in the data distribution, while we 
could keep computational complexity low. 
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