
A Polygonal Line Algorithm for Constructing
Principal Curves

Balazs Kegl, Adam Krzyzak
Dept. of Computer Science

Concordia University
1450 de Maisonneuve Blvd. W.

Montreal, Canada H3G IM8
kegl@cs.concordia.ca

krzyzak@cs.concordia.ca

Tamas Linder
Dept. of Mathematics

and Statistics
Queen's University
Kingston, Ontario
Canada K7L 3N6

linder@mast.queensu.ca

Abstract

Kenneth Zeger
Dept. of Electrical and
Computer Engineering
University of California

San Diego, La Jolla
CA 92093-0407
zeger@ucsd.edu

Principal curves have been defined as "self consistent" smooth curves
which pass through the "middle" of a d-dimensional probability distri­
bution or data cloud. Recently, we [1] have offered a new approach by
defining principal curves as continuous curves of a given length which
minimize the expected squared distance between the curve and points of
the space randomly chosen according to a given distribution. The new
definition made it possible to carry out a theoretical analysis of learning
principal curves from training data. In this paper we propose a practical
construction based on the new definition. Simulation results demonstrate
that the new algorithm compares favorably with previous methods both
in terms of performance and computational complexity.

1 Introduction

Hastie [2] and Hastie and Stuetzle [3] (hereafter HS) generalized the self consistency prop­
erty of principal components and introduced the notion of principal curves. Consider a
d-dimensional random vector X = (X(I), ... ,X(d)) with finite second moments, and let
f{t) = (II (t), ... ,!d(t)) be a smooth curve in 1{,d parameterized by t E 1{,. For any x E 1{,d
let tf(x) denote the parameter value t for which the distance between x and f(t) is mini­
mized. By the HS definition, f(t) is a principal curve if it does not intersect itself and is
self consistent, that is, f(t) = E(Xltr(X) = t). Intuitively speaking, self-consistency means
that each point of f is the average (under the distribution of X) of points that project there.
Based on their defining property HS developed an algorithm for constructing principal
curves for distributions or data sets, and described an application in the Stanford Linear
Collider Project [3].

502 B. Keg/, A. Krzyiak, T. Linder and K. Zeger

Principal curves have been applied by Banfield and Raftery [4] to identify the outlines of
ice floes in satellite images. Their method of clustering about principal curves led to a fully
automatic method for identifying ice floes and their outlines. On the theoretical side, Tib­
shirani [5] introduced a semiparametric model for principal curves and proposed a method
for estimating principal curves using the EM algorithm. Recently, Delicado [6] proposed
yet another definition based on a property of the first principal components of multivari­
ate normal distributions. Close connections between principal curves and Kohonen's self­
organizing maps were pointed out by Mulier and Cherkas sky [7]. Self-organizing maps
were also used by Der et al. [8] for constructing principal curves.

There is an unsatisfactory aspect of the definition of principal curves in the original HS
paper as well as in subsequent works. Although principal curves have been defined to be
nonparametric, their existence for a given distribution or probability density is an open
question, except for very special cases such as elliptical distributions. This also makes it
difficult to theoretically analyze any learning schemes for principal curves.

Recently, we [1] have proposed a new definition of principal curves which resolves this
problem. In the new definition, a curve f" is called a principal curve of length L for X if f"
minimizes ~(f) = E [infr IIX - f(t) 112] = EIIX - f(tf(X)) 11 2, the expected squared distance
between X and the curve, over all curves of length less than or equal to L. It was proved in
[1] that for any X with finite second moments there always exists a principal curve in the
new sense.

A theoretical algorithm has also been developed to estimate principal curves based on a
common model in statistical learning theory (e.g. see [9]). SUJ'pose that the distribution of
X is concentrated on a closed and bounded convex set K C 1l ,and we are given n training
points XI, ... ,Xn drawn independently from the distribution of X. Let S denote the family
of curves taking values in K and having length not greater than L. For k :2: 1 let Sk be the
set of polygonal (piecewise linear) curves in K which have k segments and whose lengths
do not exceed L. Let

~(X,f) = minllx - f(t)112
r

(1)

denote the squared distance between x and f. For any f E S the empirical squared er­
ror of f on the training data is the sample average ~n(f) = * L:':I ~(Xi' f). Let the
theoretical algorithm choose an fk ,n E Sk which minimizes the empirical error, i.e, let
fk,n = arg minfEsk ~n (f). It was shown in [1] that if k is chosen to be proportional to n I /3 ,
then the expected squared loss of the empirically optimal polygonal curve with k segments
and length at most L converges, as n -+ 00, to the squared loss of the principal curve of
length L at a rate ~(fk,n) - ~(f") = O(n- 1/ 3).

Although amenable to theoretical analysis, the algorithm in [1] is computationally burden­
some for implementation. In this paper we develop a suboptimal algorithm for learning
principal curves. This practical algorithm produces polygonal curve approximations to the
principal curve just as the theoretical method does, but global optimization is replaced by
a less complex iterative descent method. We give simulation results and compare our algo­
rithm with previous work. In general, on examples considered by HS the performance of
the new algorithm is comparable with the HS algorithm, while it proves to be more robust
to changes in the data generating model.

2 A Polygonal Line Algorithm

Given a set of data points ~ = {XI, ... ,xn} C 1ld, the task of finding the polygonal curve
with k segments and length L which minimizes ~ Li=1 ~(Xi' f) is computationally difficult.
We propose a suboptimal method with reasonable complexity. The basic idea is to start
with a straight line segment fl ,n (k = 1) and in each iteration of the algorithm to increase

A Polygonal Line Algorithmfor Constructing Principal Curves 503

the number of segments by one by adding a new vertex to the polygonal curve fk,n produced
by the previous iteration. After adding a new vertex, the positions of all vertices are updated
in an inner loop.

""
"" ...

" , .
' ,1"1' .' .'.

. . ', ..
.,

~

~

.. V·::· ..
:";"

': ...
' . .,

.'\ i'> .. 1"'
, . IV ~ .. · 1"'

i"

Figure I: The curves fk,n produced by the polygonal line algorithm for n = 100 data points.
The data was generated by adding independent Gaussian errors to both coordinates of a
point chosen randomly on a half circle. (a) fl,n, (b) f2,n, (c) f4 ,n, (d) fU,n (the output of the
algorithm).

START

Projection

Vertex optimization
y

END

Figure 2: The flow chart of the polygonal line algorithm.

The inner loop consists of a projection step and an optimization step. In the projection
step the data points are partitioned into "Voronoi regions" according to which segment or
vertex they project. In the optimization step the new position of each vertex is determined
by minimizing an average squared distance criterion penalized by a measure of the local
curvature. These two steps are iterated until convergence is achieved and An is produced.
Then a new vertex is added.

The algorithm stops when k exceeds a threshold c(n,~) . This stopping criterion is based
on a heuristic complexity measure, determined by the number segments k, the number of
data points n, and the average squared distance ~n(fk,n) .

THE INITIALIZATION STEP. To obtain fl,n, take the shortest segment of the first principal
component line which contains all of the projected data points.

THE PROJECTION STEP. Let f denote a polygonal curve with vertices VI , . . . ,Vk+1 and
closed line segments SI , ... ,Sk, such that Si connects vertices Vi and Vi+l. In this step the
data set Xn is partitioned into (at most) 2k + 1 disjoint sets VI, .. ' ,Vk+1 and SI,'" ,Sk,
the Voronoi regions of the vertices and segments of f, in the following manner. For any
x E 1(d let ~(x, Si) be the squared distance from x to Si (see definition (1», and let ~(x, Vi) =
IIX-ViI12. Then let

Vi = {x E Xn: ~(x, Vi) = ~(x,f), ~(x, Vi) < ~(x, vm), m = 1, ... ,i -I}.

Upon setting V = utl Vi, the Si sets are defined by

Si = {x E Xn: x ¢ V, ~(X, Si) = ~(x,f) , ~(X,Si) < ~(x,sm) , m = 1, . .. ,i -I}.

The resulting partition is illustrated in Figure 3.

504 B. Keg/, A. Krzyz'ak, T Linder and K. Zeger

Figure 3: The Voronoi partition induced by the vertices and segments of f

THE VERTEX OPTIMIZATION STEP. In this step we iterate over the vertices, and relocate
each vertex while all the others are kept fixed. For each vertex, we minimize ~n(Vi) +
APP(Vi) , a local average squared distance criterion penalized by a measure of the local
curvature by using a gradient (steepest descent) method.

The local measure of the average squared distance is calculated from the data points which
project to Vi or to the line segment(s) starting at Vi (see Projection Step). Accordingly,
let O+(Vi) = LXESi~(X,Si)' O-(Vi) = LXESi-l ~(X,Si-l), and V(Vi) = LXEVi~(X, Vi). Now
define the local average squared distance as a function of Vi by

V(Vi) + O+(Vi)

IVil + ISil

O-(Vi) + V(Vi) + O+(Vi)

lSi-Ii + IVil + ISil

O-(Vi) + V(Vi)

lSi-II + IV;!

if i = 1

ifl < i < k+ 1 (2)

ifi = k+ 1.

In the theoretical algorithm the average squared distance ~n(x,f) is minimized subject to
the constraint that f is a polygonal curve with k segments and length not exceeding L. One
could use a Lagrangian formulation and attempt to find a new position for Vi (while all
other vertices are fixed) such that the penalized squared error ~n(f) + Al(f)2 is minimum.
However, we have observed that this approach is very sensitive to the choice of A, and
reproduces the estimation bias of the HS algorithm which flattens the curve at areas of high
curvature. So, instead of directly penalizing the lengths of the line segments, we chose
to penalize sharp angles to obtain a smooth curve solution. Nonetheless, note that if only
one vertex is moved at a time, penalizing sharp angles will indirectly penalize long line
segments. At inner vertices Vi, 3 ::; i ::; k - 1 we penalize the sum of the cosines of the
three angles at vertices Vi-I, Vi, and Vi+l. The cosine function was picked because of
its regular behavior around 1t, which makes it especially suitable for the steepest descent
algorithm. To make the algorithm invariant under scaling, we multiply the cosines by the
squared radius of the data, that is, r = 1/2maxxEx",YEx"lIx- YII. At the endpoints and at
their immediate neighbors (Vi, i = 1,2,k,k+ 1), where penalizing sharp angles does not
translate to penalizing long line segments, the penalty on a nonexistent angle is replaced
by a direct penalty on the squared length of the first (or last) segment. Formally, let "Ii
denote the angle at vertex Vi, let 1t(Vi) = ,2(1 + COS'Yi) , let Jl+(Vi) = IIVi - Vi+111 2, and let
Jl- (Vi) = IIVi - Vi_111 2• Then the penalty at vertex Vi is

! 2Jl+(Vi) + 1t(Vi+l)
Jl-(Vi) + 1t(Vi) + 1t(Vi+l)

P(Vi) = 1t(Vi-I) +1t(Vi) +1t(Vi+l)
1t(Vi-I) + 1t(Vi) + Jl+(Vi)
1t(Vi-l) + 2Jl-(Vi)

ifi= 1
if i = 2
if2::; i::; k-l
if i = k
if i = k+ 1.

A Polygonal Line Algorithmfor Constructing Principal Curves 505

One important issue is the amount of smoothing required for a given data set. In the HS
algorithm one needs to set the penalty coefficient of the spline smoother, or the span of
the scatterplot smoother. In our algorithm, the corresponding parameter is the curvature
penalty factor Ap. If some a priori knowledge about the distribution is available, one can
use it to determine the smoothing parameter. However in the absence of such knowledge,
the coefficient should be data-dependent. Intuitively, Ap should increase with the number
of segments and the size of the average squared error, and it should decrease with the data
size. Based on heuristic considerations and after carrying out practical experiments, we
set Ap = A~n-l/3~n(fk ,n)1/2r-l, where A'p is a parameter of the algorithm, and can be kept
fixed for substantially different data sets.

ADDING A NEW VERTEX. We start with the optimized fk ,n and choose the segment that
has the largest number of data points projecting to it. If more then one such segment exists,
we choose the ~n~~.st ~ne. ~e I?~dPoint of this seg~ent is selecte~ as the new vertex.
Formally, let! - tl. IS,I ~ IS;I,) - 1, ... ,k}, and f - argmaxiEI Ilv, - v,+lli. Then the
new vertex is Vnew = (ve + vl+l)/2.
STOPPING CONDITION. According to the theoretical results of [1], the number of seg­
ments k should be proportional to n1/3 to achieve the O(n1/3) convergence rate for the ex­
pected squared distance. Although the theoretical bounds are not tight enough to determine
the optimal number of segments for a given data size, we found that k '" n1/ 3 also works
in practice. To achieve robustness we need to make k sensitive to the average squared dis­
tance. The stopping condition blends these two considerations. The algorithm stops when
k exceeds c(n,~n(fk,n)) = Aknl/3~n(fk,n)-1/2r.

COMPUTATIONAL COMPLEXITY. The complexity of the inner loop is dominated by the
complexity of the projection step, which is O(nk). Increasing the number of segments by
one at a time (as described in Section 2), and using the stopping condition of Section 2, the
computational complexity of the algorithm becomes O(n5/ 3). This is slightly better than the
O(n2) complexity of the HS algorithm. The complexity can be dramatically decreased if,
instead of adding only one vertex, a new vertex is placed at the midpoint of every segment,
giving O(n4/3logn) , or if k is set to be a constant, giving O(n). These simplifications work
well in certain situations, but the original algorithm is more robust.

3 Experimental Results

We have extensively tested our algorithm on two-dimensional data sets. In most experi­
ments the data was generated by a commonly used (see, e.g., [3) [5] [7]) additive model
X = Y + e, where Y is uniformly distributed on a smooth planar curve (hereafter called the
generating curve) and e is bivariate additive noise which is independent of Y.

Since the "true" principal curve is not known (note that the generating curve in the model
X = Y + e is in general not a principal curve either in the HS sense or in our definition), it
is hard to give an objective measure of performance. For this reason, in what follows, the
performance is judged subjectively, mainly on the basis of how closely the resulting curve
follows the shape of the generating curve.

In general, in simulation examples considered by HS the performance of the new algorithm
is comparable with the HS algorithm. Due to the data-dependence of the curvature penalty
factor and the stopping condition, our algorithm turns out to be more robust to alterations in
the data generating model, as well as to changes in the parameters of the particular model.

We use varying generating shapes, noise parameters, and data sizes to demonstrate the ro­
bustness of the polygonal line algorithm. All of the plots in Figure 4 show the generating
curve (Generator Curve), the curve produced by our polygonal line algorithm (Principal

506 B. Keg/, A. Krzyiak, T. Linder and K. Zeger

Curve), and the curve produced by the HS algorithm with spline smoothing (HS Principal
Curve), which we have found to perform better than the HS algorithm using scatterplot
smoothing. For closed generating curves we also include the curve produced by the Ban­
field and Raftery (BR) algorithm [4], which extends the HS algorithm to closed curves (BR
Principal Curve). The two coefficients of the polygonal line algorithm are set in all exper­
iments to the constant values Ak = 0.3 and A~ = 0.1. All plots have been normalized to fit
in a 2 x 2 square. The parameters given below refer to values before this normalization.

OJ

M

0.4

-0.4

-0.1

-OJ

(a) (b) (c)
CiIdt, 'OOpoi'lllwlhrnodiumnoioa H.I_. 'OOpoi'lll""rnodiumnoioa OioIoItadhalcllcit, 'OOpoinllwthmodllllnoioa

r-~~~~~~~~~'~~~~~~~~~~ ' ~~~~~~~~~~
• 1 ~poi'III . : . 'Slft'4>lapoi'lll •
• "-. I _, ' . ". GIMIiIorOllW - 0.8 I • 5enIriIorp.xve - 0.8

'. p ' c..vo ... • • ::,;.~. • !f'~~ ~-:- M

~ "· O.I ' / 1 ." 0.4
\ . 0.4 •••• (1 . .

' .' 02 .! . 02

. ~
tt,:

" '.

. ~ . --..::::.. :. 1 •
0.&

I •
' 1

.. I, I
. , '--,--~~""""",----""--,"--,"--,--' . "

. , -0.& -0.1 -0.4 -0.2 0 02 0.4 0.1 0.& '---'-0.-& ~.O.-I -'--0.4----"-:-02:--'-0 -0~2'-0'-.4 -0 1 ~O.~& --', ., .'--, -0.-& ~-o.-I -'--o.4~-o2~0 -0"':-2 ~0'-.4 ~O""'.I -0.& ,

• I'
• t" •

0.&

OA

02

·02

-0.4

-0.1

-0.&

_~ 'OOpoinllwth_noIoa c , 'OOpohta""omaIl!OIII S<IIapo, 'OOOOpoi'lllwthmodllllnoioa
~~~~-T~~~~~'~~~~~~~~~~ 

: a:'::: -=- OJ 
1 Pltrdpalc..vo .. -
I. ~ Pltrdpalc ..... .. 0.1 

• ..~.:;.::: .. ,." D.4 
• ( I , ." .. 

• \ I· • 02 

Slft'4>lapoi'lll • 
GtnItaIorCUM ­
Pltrdpalc..vo ---. 

HS pltrdpalc..vo . . 

l 
1 ' "." , . ~ ' . ., . 

;" . 
~/ . 

. , ., ., '---'"--'~~---'-~~~~--' 
., -0.& -0.1 -0.4 -0.2 0 02 0.4 O.! 0.& , . , -0.& -0.1 -0.4 -0.2 0 02 0.4 0.1 0.8 , ., -0.8 -0.1 -0.4 -0.2 0 02 0.4 O.! 0.& , 

W 00 00 
Figure 4: (a) The Circle Example: the BR and the polygonal line algorithm show less 
bias than the HS algorithm. (b) The Half Circle Example: the HS and the polygonal line 
algorithms produce similar curves. (c) and (d) Transformed Data Sets: the polygonal line 
algorithm still follows fairly closely the "distorted" shapes. (e) Small Noise Variance and 
(f) Large Sample Size: the curves produced by the polygonal line algorithm are nearly 
indistinguishable from the generating curves. 

In Figure 4( a) the generating curve is a circle of radius r = 1, and e = (el' e2) is a zero mean 
bivariate uncorrelated Gaussian with variance E(er) = 0.04, i = 1,2. The performance of 
the three algorithms (HS, BR, and the polygonal line algorithm) is comparable, although 
the HS algorithm exhibits more bias than the other two. Note that the BR algorithm [4] has 
been tailored to fit closed curves and to reduce the estimation bias. In Figure 4(b), only half 
of the circle is used as a generating curve and the other parameters remain the same. Here, 
too, both the HS and our algorithm behave similarly. 

When we depart from these usual settings the polygonal line algorithm exhibits better be­
havior than the HS algorithm. In Figure 4(c) the data set of Figure 4(b) was linearly trans­
formed using the matrix (j'.~ ?:~). In Figure 4( d) the transformation (- I:g =b:~) was used. 
The original data set was generated by an S-shaped generating curve, consisting of two 
half circles of unit radii, to which the same Gaussian noise was added as in Figure 4(b). In 
both cases the polygonal line algorithm produces curves that fit the generator curve more 
closely. This is especially noticeable in Figure 4(c) where the HS principal curve fails to 
follow the shape of the distorted half circle. 



A Polygonal Line Algorithm for Constructing Principal Curves 507 

There are two situations when we expect our algorithm to perform particularly well. If the 
distribution is concentrated on a curve, then according to both the HS and our definitions 
the principal curve is the generating curve itself. Thus, if the noise variance is small, 
we expect both algorithms to very closely approximate the generating curve. The data in 
Figure 4(e) was generated using the same additive Gaussian model as in Figure 4(a), but 
the noise variance was reduced to E(er) = 0.001 for i = 1,2. In this case we found that the 
polygonal line algorithm outperformed both the HS and the BR algorithms. 

The second case is when the sample size is large. Although the generating curve is not 
necessarily the principal curve of the distribution, it is natural to expect the algorithm to 
well approximate the generating curve as the sample size grows. Such a case is shown in 
Figure 4(f), where n = 10000 data points were generated (but only a small subset of these 
was actually plotted). Here the polygonal line algorithm approximates the generating curve 
with much better accuracy than the HS algorithm. 

The Java implementation of the algorithm is available at the WWW site 
http://www.cs.concordia.ca/-grad/kegl/pcurvedemo.html 

4 Conclusion 

We offered a new definition of principal curves and presented a practical algorithm for 
constructing principal curves for data sets. One significant difference between our method 
and previous principal curve algorithms ([3],[4], and [8]) is that, motivated by the new 
definition, our algorithm minimizes a distance criterion (2) between the data points and the 
polygonal curve rather than minimizing a distance criterion between the data points and the 
vertices of the polygonal curve. This and the introduction of the data-dependent smoothing 
factor Ap made our algorithm more robust to variations in the data distribution, while we 
could keep computational complexity low. 

Acknowledgments 

This work was supported in part by NSERC grant OGPOOO270, Canadian National Networks of 
Centers of Excellence grant 293, and the National Science Foundation. 

References 
[1] B. Kegl, A. Krzyzak, T. Linder, and K. Zeger, ''Principal curves: Learning and convergence," in 

Proceedings of IEEE Int. Symp. on Information Theory, p. 387, 1998. 

[2] T. Hastie, Principal curves and surfaces. PhD thesis, Stanford University, 1984. 

[3] T. Hastie and W. Stuetzle, ''Principal curves," Journal of the American Statistical Association, 
vol. 84,no. 406, pp. 502-516, 1989. 

[4] J. D. Banfield and A. E. Raftery, "Ice floe identification in satellite image~ using mathematical 
morphology and clustering about principal curves," Journal of the American Statistical Associa­
tion, vol. 87, no. 417, pp. 7-16, 1992. 

[5] R. Tibshirani, "Principal curves revisited," Statistics and Computation, vol. 2, pp. 183-190, 1992. 

[6] P. Delicado, ''Principal curves and principal oriented points," Tech. Rep. 309, Department 
d'Economia i Empresa, Universitat Pompeu Fabra, 1998. 
http://www.econ.upf.es/deehome/what/wpapers/postscripts/309.pdf. 

[7] F. Mulier and V. Cherkassky, "Self-organization as an iterative kernel smoothing process," Neural 
Computation, vol. 7, pp. 1165-1177, 1995. 

[8] R. Der, U. Steinmetz, and G. Balzuweit, "Nonlinear principal component analysis," tech. rep., 
Institut fUr Infonnatik, Universitilt Leipzig, 1998. 
http://www.informatik.uni-leipzig.de/~der/Veroeff/npcafin.ps. 

[9] V. N. Vapnik, The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995. 


