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Abstract 

We show the similarity between belief propagation and TAP, for 
decoding corrupted messages encoded by Sourlas's method. The 
latter is a special case of the Gallager error-correcting code, where 
the code word comprises products of J{ bits selected randomly from 
the original message. We examine the efficacy of solutions obtained 
by the two methods for various values of J{ and show that solutions 
for J{ 2': 3 may be sensitive to the choice of initial conditions in 
the case of unbiased patterns. Good approximations are obtained 
generally for J{ = 2 and for biased patterns in the case of J{ 2': 3, 
especially when Nishimori's temperature is being used. 

1 Introduction 

Belief networks [1] are diagrammatic representations of joint probability distribu­
tions over a set of variables. This set is usually represented by the vertices of 
a graph, while arcs between vertices represent probabilistic dependencies between 
variables . Belief propagation provides a convenient mathematical tool for calculat­
ing iteratively joint probability distributions between variables and have been used 
in a variety of cases, most recently in the field of error correcting codes, for decoding 
corrupted messages [2] (for a review of graphical models and their use in the context 
of error-correcting codes see [3]). 

Error-correcting codes provide a mechanism for retrieving the original message after 
corruption due to noise during transmission. Of a particular interest to the current 
paper is an error-correcting code presented by Sourlas [4] which is a special case of 
the Gallager codes [5]. The latter have been recently re-discovered by MacKay and 
Neal [2] and seem to have a significant practical potential. 

In this paper we will examine the similarities between the belief propagation (BP) 
and TAP approaches, used to decode corrupted messaged encoded by Sourlas's 
method , and compare the solutions obtained by both approaches to the exact results 
obtained using the replica method [8]. The statistical mechanics approach will then 
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allow us to draw some conclusion on the efficacy of the TAP /BP approach in the 
context of error correcting codes. 

The paper is arranged in the following manner: In section 2 we will introduce the 
encoding method and describe the decoding task. The Belief Propagation approach 
to the decoding process will be introduced in section 3 and will be compared to the 
TAP approach for diluted spin systems in section 4. Numerical solutions for various 
cases will be presented in section 5 and we will summarize our results and discuss 
their implications in section 6. 

2 The decoding problem 

In a general scenario, a message represented ~ an N dimensional binary vector e 
is encoded by a vector JO which is then transmitted through a noisy channel with 
some flipping probability p per bit . The received message J is then decoded to 
retrieve the original message. Sourlas's code [4], is based on encoded message bits 
of the form JPl,i 2 . . iK = ~il ei 2 ... eiK , taking the product of different J{ message sites 
for each code word bit . 

In the statistical mechanics approach we will attempt to retrieve the original mes­
sage by exploring the ground state of the following Hamiltonian which corresponds 
to the preferred state of the system in terms of 'energy' 

1{=- L Ah , .. . iK) J(il , .. iK) Si l · · .SiK - F/f3LSk , (1) 
(i1, ... iK) k 

where S is an N dimensional binary vector of dynamical variables and A is a sparse 
tensor with C unit elements per index (other elements are zero), which determines 
the components of JO. The last term on the right is required in the case of sparse 
(biased) messages and will require assigning a certain value to the additive field 
F / f3, related to the prior belief in the Bayesian framework. 

The statistical mechanical analysis can be easily linked to the Bayesian frame­
work [4] in which one focuses on the posterior probability using Bayes theorem 
P(SIJ)",,-, IT!' P(J!'IS) Po(S) where jJ runs over the message components and Po(S) 
represents the prior . Knowing the posterior one can calculate the typical retrieved 
message elements and their alignment, which correspond to the Bayes-optimal de­
coding. The logarithms of the likelihood and prior terms are directly related to the 
first and second components of the Hamiltonian (Eq.l). 

One should also note that A(il , . iK) J(il , . i K) represents a similar encoding scheme 
to that of Ref. [2] where a sparse matrix with J{ non-zero elements per row multiplies 
the original message e and the resulting vector, modulo 2, is transmitted. 

Sourlas analyzed this code in the cases of J{ = 2 and J{ -+ 00, where the ratio 
C / J{ -+ 00 , by mapping them onto the SK [9] and Random Energy [10] models 
respectively. However, the ratio R = J{ / C constitutes the code rate and the scenarios 
examined by Sourlas therefore correspond to the limited case of a vanishing code 
rate. The case of finite code rate, which we will consider here , has only recently 
been analyzed [8]. 

3 Decoding by belief propagation 

As our goal, of calculating the posterior of the system P( S IJ) is rather difficult , we 
resort to the methods of BP, focusing on the calculation of conditional probabilities 
when some elements of the system are set to specific values or removed. 
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The approach adopted in this case, which is quite similar to the practical approach 
employed in the case of Gallager codes [2], assumes a two layer system corresponding 
to the elements of the corrupted message J and the dynamical variables 5 respec­
tively, defining conditional probabilities which relate elements in the two layers: 

(2) 

r~1 P(JI'ISI=X,{JII~I'}) = L P(JI'ISI=X,{Sk#}) P({Sk~dl{JII~I'}) , 
{ Sk;tz} 

where the index J.l represents an element of the received vector message J, con­
stituted by a particular choice of indices i 1 , .. . iK, which is connected to the cor­
responding index of 5 (l in the first equation), i.e., for which the corresponding 
element A(i1, ... iK) is non-zero; the notation {Sk~d refers to all elements of 5, ex­
cluding the I-th element, which are connected to the corresponding index of J (J.l 
in this case for the second equation); the index x can take values of ±1. The con­
ditional probabilities q~1 and r~1 will enable us, through recursive calculations to 
obtain an approximated expression to the posterior. 

Employing Bayes rule and the assumption that the dependency of SI on 
an element JII is factorizable and vice versa: P(SI 1 ,SI 2 ",SIKI{Jvtl'}) = 

nf=lP(Slkl{JIlt/'}) and P({J/J~I'} ISI=x) = nllt/'P(JIIISI=X,{J(7~II})' 
one can rewrite a set of coupled equations for q!/' q;/ , r!1 and r;/ of the form 

q~1 = al'l PI IT r:1 and r~1 = L P (J I' lSI = x, {Sk#}) IT q!Z ' (3) 
/J~I' {Sk;tz} k~1 

where al'l is a normalizing factor such that q~1 + q;/ = 1 and pf = P (SI = x) are 
our prior beliefs in the value of the source bits SI. 

This set of equations can be solved iteratively [2] by updating a coupled set of differ­
ence equations for 8ql'I = q~/-q;/ and 8rl'I = r~l-r;/, derived for this specific model, 
making use of the fact that the variables r~/' and sub-sequentially the variables q~/' 

can be calculated by exploiting the relation r;/ = (1±8rl'l)/2 and Eq.(3). At each 
iteration we can also calculate the pseudo-posterior probabilities qf = alPI nil r~/' 
where al are normalizing factors, to determine the current estimated value of SI. 

Two points that are worthwhile noting: Firstly, the iterative solution makes use of 
the normalization r~/+r;/ = 1, which is not derived from the basic probability rules 
and makes implicit assumptions about the probabilities of obtaining SI = ±1 for all 
elements I. Secondly, the iterative solution would have provided the true posterior 
probabilities qf if the graph connecting the message J and the encoded bits 5 would 
have been free of cycles, i.e., if the graph would have been a tree with no recurrent 
dependencies among the variables. The fact that the framework provides adequate 
practical solutions has only recently been explained [13]. 

4 Decoding by TAP 

We will now show that for this particular problem it is possible to obtain a similar 
set of equations from the corresponding statistical mechanics framework based on 
Bethe approximation [11] or the TAP (Thouless-Anderson-Palmer) approach [12] 
to diluted systems 1 . In the statistical mechanics approach we assign a Boltzmann 

1 The terminology in the case of diluted systems is slightly vague. Unlike in the case 
of fully connected systems, self consistent equations of diluted systems cannot be derived 
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weight to each set comprising an encoded message bit J II. and a dynamical vector S 

WE (JII.IS) = e-{3 9(1I'IS) , (4) 

such that the first term of the system's Hamiltonian (Eq.1) can be rewritten as 
L II. g ( Jil.l S) , where the index J..l runs over all non-zero sites in the multidimensional 
tensor A. We will now employ two straightforward assumptions to write a set of 
coupled equations for the mean field q~1 == P(511 {Jvtll.})' which may be identified 
as the same variable as in the belief network framework (Eq.2) , and the effective 
Boltzmann weight weff (J 11.151, {J vtll.}): 

1) we assume a mean field behavior for the dependence of the dynamical variables 
S on a certain realization of the message sites J, i.e., the dependence is factorizable 
and may be replaced by a product of mean fields . 

2) Boltzmann weights (effective) for site 51 are factorizable with respect to J 11.. 
The resulting set of equations are of the form 

weff(J1l. 151, {Jvtll.}) = Tr{Sk;l!z} WE (JII. 1 S) II q~r 
k;tl 

qSl 
11.1 == CLII.I pfl II Weff(Jv 151, {J"tv}) , 

vtll. 
(5) 

where CLII.I is a normalization factor and pfl is our prior knowledge of the source's 
bias. Replacing the effective Boltzmann weight by a normalized field, which may 
be identified as the variable r~1 of Eq.(2), we obtain 

r~l = P (51 1 JII.' {Jvtll.}) = ali.I weff(J1l. 151, {Jvtll.}) , (6) 

i.e., a set of equations equivalent to Eq.(3). The explicit expressions of the normal­
ization coefficients, ali.I and CLII.I' are 

a~l = Tr{s} WE (JII.IS) II q~f 
k;tl 

and (7) 

The somewhat arbitrary use of the differences oqll.l = (5i}q and Dril.l = (5i}r in 
the BP approach becomes clear form the statistical mechanics description, where 
they represent the expectation values of the dynamical variables with respect to the 
fields . The statistical mechanics formulation also provides a partial answer to the 
successful use of the BP methods to loopy systems , as we consider a finite number 
of steps on an infinite lattice [14]. However , it does not provide an explanation in 
the case of small systems which should be examined using other methods . 

The formulation so far has been general; however, in the case of Sourlas 's code we 
can make use of the explicit expression for g to derive the relat\on between q~l, r;l , 
oqll.l and Dril.l as well as an explicit expression for WE (JII.IS,,8) 

q~l == ~ (1 + oq1l.151) , r~l = ~ (1 + or1l.151) and (8) 

WE (JII.IS ,,8) = ~ cosh ,8JII. (1 + tanh,8J II. II 51) , (9) 
I H(II.) 

by the perturbation expansion of the mean field equations with respect to Onsager reac­
tion fields since these fields are too large in diluted systems. Consequently, the resulting 
equations are different than those obtained for fully connected systems [12]. We termed 
our approach TAP, following the convention for the Bethe approximation when applied to 
disordered systems subject to mean field type random interactions. 



250 Y. Kabashima and D. Saad 

where .C(J.l) is the set of all sites of S connected to J/.I ' i.e. , for which the corre­
sponding element of the tensor A is non-zero. The explicit form of the equations 
for 8q/.ll and 8r/.ll becomes 

8rjjl=tanhf3J/.I II 8q/.ll 
IEC,(/.I)/I 

and 8q/.ll =tanh ( L tanh- 1 8rv i + F) , (10) 
vEM(l)//.I 

where M(l)/ J.l is the set of all indices of the tensor J , excluding J.l, which are 
connected to the vector site I; the external field F which previously appeared in the 
last term of Eq. (1) is directly related to our prior belief of the message bias 

1 
pfl = "2 (1 + tanh FSI) . (11) 

We therefore showed that there is a direct relation between the equations derived 
from the BP approach and from TAP in this particular case. One should note that 
the TAP approach allows for the use of finite inverse-temperatures f3 which is not 
naturally included in the BP approach. 

5 Numerical solutions 

To examine the efficacy of TAP /BP decoding we used the method for decoding 
corrupted messages encoded by the Sourlas scheme [4], for which we have previously 
obtained analytical solutions using the replica method [8]. We solved iteratively 
Eq.(10) for specific cases by making use of differences 8qJjI and 8r/.ll to obtain the 
values of q~l and r'N and of the magnetization M. 

Numerical solutions of 10 individual runs for each value of the flip rate p starting 
from different initial conditions, obtained for the case f{ = 2 and C = 4, different 
biases (J = pi = 0.1, 0.5 - the probability of +1 bit in the original message e) and 
temperatures (T = 0.26, Tn) are shown in Fig . 1a. For each run , 20000 bit code 
words JO were generated from 10000 bit message e using a fixed random sparse 
tensor A . The noise corrupted code word J was decoded to retrieve the original 
message e. Initial conditions are set to 8r /.II = 0 and 8q/.ll = tanh F reflecting the prior 
belief; whenever the TAP /BP approach was successful in predicting the theoretical 
values we observed convergence in most runs corresponding to the ferromagnetic 
phase while almost all runs at low temperatures did not converged to a stable 
solution above the critical flip-rate (although the magnetization M did converge as 
one may expect) . We obtain good agreement between the TAP /BP solutions and 
the theoretical values calculated using the methods of [8] (diamond symbols and 
dashed line respectively) . The results for biased patterns at T = 0.26 presented in 
the form of mean values and standard deviation , show a sub-optimal improvement 
in performance as expected. Obtaining solutions under similar conditions but at 
Nishimori's temperature - l/Tn = 1/2In[(1 - p)/p] [7], we see that pattern sparsity 
is exploited optimally resulting in a magnetization M ~ 0.8 for high corruption 
rates , as Tn simulates accurately the loss of information due to channel noise [6 , 7]; 
results for unbiased patterns (not shown) are not affected significantly by the use 
of Nishimori's temperature. 

The replica-based theoretical solutions [8] indicate a profoundly different behaviour 
for f{ = 2 in comparison to other f{ values. We therefore obtained solutions for 
J{ = 5 under similar conditions (which are representative of results obtained in 
other cases of f{ # 2). The results presented in Fig. 1b , in terms of means and 
standard deviation of 10 individual runs per flip rate value p, are less encouraging 
as the iterative solutions are sensitive to the choice of initial conditions and tend to 
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Figure 1: Numerical solutions for M and different flip rate p. (a) For K = 2, 
different biases (f = pi = 0.1, 0.5) and temperatures (T = 0.26, Tn). Results for the 
unbiased patterns are shown as raw data (10 runs per flip rate value p - diamond), 
while the theoretical solution is marked by the dashed line. Results for biased 
patterns are presented by their mean and standard deviation, showing a suboptimal 
performance as expected for T= 0.26 and an optimal one at Nishimori's temperature 
-Tn. The standard deviation is significantly smaller than the symbol size. Figure 
(b) shows results for the case K = 5 and T = Tn in similar conditions to (a). 
Also here iterative solutions may generally drift away from the theoretical values 
where temperatures other than Tn are employed (not shown); using Nishimori's 
temperature alleviates the problem only in the case of biased messages and the 
results are in close agreement with the theoretical solutions (inset - focusing on low 
p values). 

converge to sub-optimal values unless high sparsity and the appropriate choice of 
temperature (Tn) forces them to the correct values, showing then good agreement 
with the theoretical results (solid line, see inset). This phenomena is indicative of the 
fact that the ground state of the non-biased system is macroscopically degenerate 
with multiple equally good ground states. 

We conclude that the TAP /BP approach may be highly useful in the case of biased 
patterns but may lead to errors for unbiased patterns and K 2: 3, and that the use 
of the appropriate temperature, i.e., Nishimori's temperature, enables one to obtain 
improved results, in agreement with results presented elsewhere [4, 6, 7]. 
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6 Summary and discussion 

We compared the use of BP to that of TAP for decoding corrupted messages encoded 
by Sourlas's method to discover that in this particular case the two methods provide 
a similar set of equations. We then solved the equations iteratively for specific cases 
and compared the results to those obtained by the replica method. The solutions 
indicate that the method is particularly useful in the case of biased messages and 
that using Nishimori's temperature is highly beneficial; solutions obtained using 
other temperature values may be sub-optimal. For non-sparse messages and l{ 2: 3 
we may obtain erroneous solutions using these methods. 

It would be desirable to explore whether the similarity in the equations derived using 
TAP and BP is restricted to this particular case or whether there is a more general 
link between the two methods. Another important question that remains open 
is the generality of our conclusions on the efficacy of these methods for decoding 
corrupted messages, as they are currently being applied in a variety of state-of-the­
art coding schemes (e.g., [2,3]). Understanding the limitations ofthese methods and 
the proper way to use them in general, especially in the context of error-correcting 
codes, may be highly beneficial to practitioners. 
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