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Abstract 

We describe Maximum-Likelihood Continuity Mapping (MALCOM), an 
alternative to hidden Markov models (HMMs) for processing sequence 
data such as speech. While HMMs have a discrete "hidden" space con
strained by a fixed finite-automaton architecture, MALCOM has a con
tinuous hidden space-a continuity map-that is constrained only by a 
smoothness requirement on paths through the space. MALCOM fits into 
the same probabilistic framework for speech recognition as HMMs, but 
it represents a more realistic model of the speech production process. 
To evaluate the extent to which MALCOM captures speech production 
information, we generated continuous speech continuity maps for three 
speakers and used the paths through them to predict measured speech 
articulator data. The median correlation between the MALCOM paths 
obtained from only the speech acoustics and articulator measurements 
was 0.77 on an independent test set not used to train MALCOM or the 
predictor. This unsupervised model achieved correlations over speak
ers and articulators only 0.02 to 0.15 lower than those obtained using an 
analogous supervised method which used articulatory measurements as 
well as acoustics .. 

1 INTRODUCTION 

Hidden Markov models (HMMs) are generally considered to be the state of the art in speech 
recognition (e.g., Young, 1996). The strengths of the HMM framework include a rich math
ematical foundation, powerful training and recognition algorithms for large speech corpora, 
and a probabilistic framework that can incorporate statistical phonology and syntax (Mor
gan & Bourlard, 1995). However, HMMs are known to be a poor model of the speech 
production process. While speech production is a continuous, temporally evolving pro
cess, HMMs treat speech production as a discrete, finite-state system where the current 
state depends only on the immediately preceding state. Furthermore, while HMMs are 
designed to capture temporal information as state transition probabilities, Bourlard et al., 
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(1995) suggest that when the transition probabilities are replaced by constant values, recog
nition results do not significantly deteriorate. That is, while transitions are often considered 
the most perceptually relevent component of speech, the conventional HMM framework is 
poor at capturing transition information. 

Given these deficiencies, we are considering alternatives to the HMM approach that main
tain its strengths while improving upon its weaknesses. This paper describes one such 
model called Maximum-Likelihood Continuity Mapping (MALCOM). We first review a 
general statistical framework for speech recognition so that we can compare the HMM and 
MALCOM formulations. Then we consider what the abstract hidden state represents in 
MALCOM, demonstrating empirically that the paths through MALCOM's hidden space 
are closely related to the movements of the speech production articulators. 

2 A GENERAL FRAMEWORK FOR SPEECH RECOGNITION 

Consider an unknown speech waveform that is converted by a front-end signal-processing 
module into a sequence of acoustic vectors X. Given a space of possible utterances, W, 
the task of speech recognition is to return the most likely utterance W * given the observed 
acoustic sequence X . Using Bayes' rule this corresponds to 

(1) 

In recognition, P(X) is typically ignored because it is constant over all W, and the pos
terior P(WIX) is estimated as the product of the prior probability of the word sequence, 
P(W), and the probability that the observed acoustics were generated by the word se
quence, P(XI W) . The prior P(W) is estimated by a language model, while the production 
probability P(X IW) is estimated by an acoustic model. In continuous speech recognition, 
the product of these terms must be maximized over W; however, in this paper, we will re
strict our attention to the form of the acoustical model only. Every candidate utterance W 
corresponds to a sequence of word/phone models M w such that P(XIW) = P(XIMw), 
and each M w considers all possible paths through some "hidden" space. Thus, for each 
candidate utterance, we must calculate 

P(X IM w) = i P(XIY, Mw )P(YIMw)dY, (2) 

where Y is some path through the hidden space. 

2.1 HIDDEN MARKOV MODELS 

Because HMMs are finite-state machines with a given fixed architecture, the path Y 
through the hidden space corresponds to series of discrete states, simplifying the integral 
of Eq. (2) to a sum. However, to avoid computing the contribution of all possible paths, the 
Viterbi approximation-considering only the single path that maximizes Eq. (2)-is fre
quently used without much loss in recognition performance (Morgan & Bourlard, 1995). 
Thus, 

P(XIMw) ~ ar!?"ymaxP(XIY, Mw)P(YIM w). (3) 

The first term corresponds to the product of the emission probabilities of the acoustics given 
the state sequence and is typically estimated by mixtures of high-dimensional Gaussian 
densities. The second term corresponds to the product of the state transition probabilities. 
However, because Bourlard et al. (1995) found that this second term contributes little to 
recognition performance, the modeling power of the conventional HMM must reside in 
the first term. Training the HMM system involves estimating both the emission and the 
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transition probabilities from real speech data. The Baum-Welchlforward-backward algo
rithm (e.g., Morgan & Scofield, 1994) is the standard computationally efficient algorithm 
for iteratively estimating these distributions. 

2.2 MAXIMUM-LIKELIHOOD CONTINUITY MAPPING (MALCOM) 

In contrast to HMMs, the multi-dimensional MALCOM hidden space is continuous-there 
are an infinite number states and paths through them. While the HMM is constrained by 
a fixed architecture, MALCOM is constrained by the notion of continuity of the hidden 
path. That is, the path must be smooth and continuous: it may not carry any energy above 
a given cutoff frequency. Unlike the discrete path in an HMM, the smooth hidden path 
in MALCOM attempts to emulate the motion of the speech articulators in what we call a 
continuity map (CM). 

Unless we know how to evaluate the integral of Eq. (2) (which we currently do not), we 
must also make the Viterbi approximation and approximate P(XIM w ) by considering 
only the single path that maximizes the likelihood of the acoustics X given the utterance 
model M w , resulting in Eq. (3) once again. Analogously, the first term, P(XIY, M w ), 

corresponds to the acoustic generation probability given the hidden path, and the second 
term corresponds to the probability of the hidden path given the utterance model. This 
paper focuses on the first term because this is the term that produces conventional HMM 
performance. 1 

Common to all Mw is a set of N probability density functions (pdfs) <I> that define the CM 
hidden space, modeling the likelihood of Y given X for an N -code vector quantization 
(VQ) of the acoustic space. Because these pdfs are defined over the low-dimensional CM 
space instead of the high-dimensional acoustic space (e.g., 6 vs. 40+), MALCOM requires 
many fewer parameters to be estimated than the corresponding HMM. 

3 THE MALCOM ALGORITHM 

We now turn to developing an algorithm to estimate both the CM pdfs <I> and the corre
sponding paths Y that together maximize the likelihood of a given time series of acoustics, 
C = P(X I Y , <1» . This is an extension of the method first proposed by Hogden (1995), in 
which he instead maximized P(YIX, <1» using vowel data from a single speaker. Starting 
with random but smooth Y , the MALCOM training algorithm generates a CM by iterating 
between the following two steps: (1) Given Y, reestimate <I> to maximize C; and (2) Given 
<1>, reestimate smooth paths Y to maximize £. 

3.1 LOG LIKELIHOOD FUNCTION 

To specify the log likelihood function C, we make two dependence claims and one inde
pendence assumption . First we claim that Yt depends (to at least some small extent) on all 
other Y in the utterance, an expression of the continuity constraint described above. We 
make another natural claim that Xt depends on Yt, that the path configuration at time t in
fluences the corresponding acoustics. However, we do make the conditional independence 
assumption that 

n 

C = P(XIY, <1» = IT P(XtIYt , <1». (4) 
t=l 

Note that Eq. (4) does not assume that each Xt is independent OfXt-l (as is often assumed 
in data modeling); it only assumes that the conditioning of Xt on Yt is independent from 

IHowever, we are currently developing a model of P(YIM w ) to replace the corresponding (and 
useless) term in the conventional HMM formulation as well (Hogden et al. , 1998). 
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t-l to t. For example, because Xt depends on Yt, Yt depends on all othery (the smoothness 
constraint), and Xt-1 depends on Yt-1, Xt is not assumed to be independent of all other xs 
in the utterance. 

With a log transformation and an invocation of Bayes' rule, we obtain the MALCOM log 
likelihood function: 

n 

InL: = L [InP(Ytlxt, <1» + InP(xt) -InP(Ytl<l»]· (5) 
t=1 

We model each P(Yt IXt, <1» by a probability density function (pdf) p[Ytlxt, <l>j (Xt)], where 
the particular model <l>j depends on which of the N VQ codes Xt is assigned to. Here we 
use a simple multi-dimensional Gaussian for each pdf, but we are currently exploring the 
use of multi-modal mixtures of Gaussians to represent the pdfs for sounds such as stop 
consonants for which the inverse map from acoustics to articulation may not be unique 
(Nix, 1998). Next, we need an estimate of P(Ytl<l», which can be obtained by summing 

over all VQ partitions: P(Ytl<l» :::::: L~=l p(YtIXj, <l>j)P(Xj). We estimate P(Xj) by 
calculating the relative frequency of each acoustic code in the VQ codebook. 

3.2 PDF ESTIMATION 

For step (1) of training, we use gradient-based optimization to reestimate the means of the 
Gaussian pdfs for each acoustic partition, where the gradient of Eq.(5) with respect to the 
mean of pdf i is 

V' JL.In L: = L E;l(Yt -JLi) _ t {L~=1 p[Y~Xj, <I>(Xj)]P(Xj)Ej 1(Yt - JLj)} 
tEx(t)=x. t=1 Lj=l p[Ytlxj, <I>(Xj)]P(Xj) 

(6) 
where E is the covariance matrix for each pdf. For the results in this paper, we use a com
mon radially symmetric covariance matrix for all pdfs and reestimate the covariance matrix 
after each path optimization step.2 In doing the optimization, we employ the following al
gorithm: 

1. Make an initial guess of each JLi as the means of the path configurations corre
sponding to the observed acoustics X E Xt . 

2. Construct V' JL In L: by considering Eq. (6) over all N acoustic partitions. 
3. Determine a search direction for the optimization using, for example, conjugate 

gradients and perform a line search along this direction (Press et al., 1988). 
4. Repeat steps [2]-[3] until convergence. 

To avoid potential degenerate solutions, after each pdf optimization step, the dimensions 
of the CM are orthogonalized. Furthermore, because the scale of the continuity map is 
meaningless (only its topological arrangement matters), the N pdfmeans are scaled to zero 
mean, unit variance before each path optimization step. 

3.3 PATH ESTIMATION 

For step (2) of training, we use gradient-based optimization to reestimate Y, where the 
gradient of the log likelihood function with respect to a specific Yt is given by 

V'y InL: = V'y,p[Ytlxt,<I>(xt)] _ V'y, F~=IP[YtIXj,<I>(Xj)]P(Xj) (7) 

, p[YtIXt, <I>(Xt)] Lj=1 p[Ytlxj, <I>(Xj)]P(Xj) 

2However, we are currently exploring the effects of individual and diagonal covariance matrices. 
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In doing the optimization, we employ the following gradient-based algorithm: 

1. Make an initial guess of the path yO as the means of the pdfs corresponding to 
the observed acoustic sequence X. 

2. Low pass filter yo. 
3. Construct \1y InC by considering Eq. (7) over all t. 
4. Determine a search direction for the optimization using, for example, conjugate 

gradients (Press et at., 1988). 
5. Low-pass filter this search direction using the same filter as in step [2]. 
6. Perform a line search along the filtered direction (Press et at., 1988). 
7. Repeat steps [3]-[6] until convergence. 

Because neither the line search direction nor the initial estimate yO contains energy above 
the cutoff frequency of the low-pass filter, their linear addition-the next estimate of Y -
will not contain energy above the cutoff frequency either. Thus, steps [2] and [5] implement 
the desired smoothness constraint. 

4 COMPARNG MALCOM PATHS TO SPEECH ARTICULATION 

To evaluate our claim that MALCOM paths are topologically related to articulator motions, 
we construct a regression predictor from Y to measured articulator data using the training 
data and test the quality of this predictor on an independent test set. 

Our speech corpus consists of data from two male and one female native speakers of Ger
man. This data was obtained from Dr. Igor Zlokarnik and recorded at the Technical Uni
versity of Munich, Germany using electro-magnetic articulography (EMA) (Perkell et al., 
1992). Each speaker's articulatory measurements and acoustics were recorded for the same 
108 sentences, where each sentence was about 4 seconds long. 

The acoustics were recorded using a room-placed microphone and sampled using 16-bit 
resolution at 16 kHz. Prior to receiving the data from Munich, the data were resampled at 
11025 Hz. To represent the acoustic signal in compact vector time-series, we used 256-
sample (23.2 msec) Hamming-windowed frames, with a new frame starting every 5.8 msec 
(75% overlap). We transform each frame into a 13th-order LPC-cepstral coefficient vector 
at (12 cepstral features plus log gain-see Morgan& Scofield, 1994). A full acoustical 
feature vector Xt consists of a window of seven frames such that Xt is made up of the frames 
{at-6,at-4,at-2,at,at+2, at+4,at+6}. To VQ the acoustic space we used the classical k
means algorithm (e.g., Bishop, 1995), but we used 512 codes to model the vowel data, 
and 256 codes each to model the stop consonants, the fricatives, the nasals, and the liquids 
(1536 codes combined).3 

The articulatory data consist of the (x, y) coordinates of 4 coils along the tongue and the y
coordinates of coils on the jaw and lower lip. Figure 1 illustrates the approximate location 
of each coil. The data were originally sampled at 250 Hz but were resampled to 172.26 Hz 
to match one articulatory sample for each 75%-overlapping acoustic frame of 256 samples. 
The articulatory data were subsequenpy low-pass filtered at 15 Hz to remove measurement 
noise. 

Sentences 1-90 were used as a training set, and sentences 91-108 were withheld for eval
uation. A separate CM was generated for each speaker using the training data. We used 
an 8 Hz cutoff frequency because the measured articulatory data had very little energy 
above 8 Hz, and a 6-dimensional continuity map was used because the first six principal 
components capture 99% of the variance of the corresponding articulator data (Nix, 1998). 

3This acoustic representation and VQ scheme were determined to work well for modeling real 
articulator data (Nix, 1998), so they were used here as well. 
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Figure 1: Approximate positions of EMA coils for speech articulation measurements. 

Because the third term in Eq. (5) is computationally complex, we approximated Eq. (5) 
by only its first term (the second term is constant during training) until In C, calculated 
at the end of each iteration using all terms, started to decrease. At this point we started 
using both the first and third terms of Eq. (5). In each pdf and path optimization step, 
our convergence criterion was when the maximum movement of a mean or a path was 
< 10-4 . Our convergence criterion for the entire algorithm was when the correlation of 
the paths from one full iteration of pdf and path optimization to another was> 0.99 in all 
dimensions. This usually took about 30 iterations. 

To evaluate the extent to which MALCOM hidden paths capture information related to 
articulation, we used the same training set to estimate a non-linear regression function 
from the output generated by MALCOM to the corresponding measured articulator data. 
We used an ensemble of 10 single-hidden-Iayer, 32-hidden unit, multi-layer perceptrons 
trained on different 2/3-training, 1/3-early stopping partitions of the training set, where 
the results of the ensemble on the test set were averaged (e.g., Bishop, 1995). A linear 
regression produced results approximately 10% worse than those we report here. 

To contrast with the unsupervised MALCOM method, we also tested a supervised method 
in which the articulatory data was available for training as well as evaluation. This involved 
only the pdf optimization step of MALCOM because the paths were fixed as the articulator 
measurements. The resulting pdfs were then used in the path optimization step to determine 
paths for the test data acoustics. We could then measure what fraction of this supervised 
performance the unsupervised MALCOM attained. 

5 RESULTS AND CONCLUSIONS 

The results of this regression on the test set are plotted in Figure 2. The MALCOM paths 
had a median correlation of 0.77 with the actual articulator data, compared to 0.84 for 
the comparable supervised method. Thus, using only the speech acoustics, MALCOM 
generated continuity maps with correlations to real articulator measurements only 0.02 to 
0.15 lower than the corresponding supervised model which used articulatory measurements 
as well as acoustics. 

Given that (1) MALCOM fits into the same probabilistic framework for speech recognition 
as HMMs and (2) MALCOM's hidden paths capture considerable information about the 
speech production process, we believe that MALCOM will prove to be a viable alternative 
to the HMM for speech processing tasks. Our current work emphasizes developing a word 
model to complete the MALCOM formulation and test a full speech recognition system. 
Furthermore, MALCOM is applicable to any other task to which HMMs can be applied, 
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Figure 2: Correlation between estimated and actual articulator trajectories on the indepen
dent test set averaged across speakers. Each full bar is the performance of the supervised 
analogy to MALCOM, and the horizontal line on each bar is the performance of MALCOM 
itself. 

including fraud detection (Hogden, 1997) and text processing. 
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