
Robust. Efficient, Globally-Optimized
Reinforcement Learning with the

Parti-Game Algorithm

Mohammad A. AI-Ansari and Ronald J. Williams
College of Computer Science, 161 CN

Northeastern University
Boston, MA 02115

alansar@ccs.neu.edu, rjw@ccs.neu.edu

Abstract

Parti-game (Moore 1994a; Moore 1994b; Moore and Atkeson 1995) is a
reinforcement learning (RL) algorithm that has a lot of promise in over
coming the curse of dimensionality that can plague RL algorithms when
applied to high-dimensional problems. In this paper we introduce mod
ifications to the algorithm that further improve its performance and ro
bustness. In addition, while parti-game solutions can be improved locally
by standard local path-improvement techniques, we introduce an add-on
algorithm in the same spirit as parti-game that instead tries to improve
solutions in a non-local manner.

1 INTRODUCTION

Parti-game operates on goal problems by dynamically partitioning the space into hyper
rectangular cells of varying sizes, represented using a k-d tree data structure. It assumes
the existence of a pre-specified local controller that can be commanded to proceed from the
current state to a given state. The algorithm uses a game-theoretic approach to assign costs
to cells based on past experiences using a minimax algorithm. A cell's cost can be either
a finite positive integer or infinity. The former represents the number of cells that have to
be traveled through to get to the goal cell and the latter represents the belief that there is
no reliable way of getting from that cell to the goal. Cells with a cost of infinity are called
losing cells while others are called winning ones.

The algorithm starts out with one cell representing the entire space and another, contained
within it, representing the goal region. In a typical step, the local controller is commanded
to proceed to the center of the most promising neighboring cell. Upon entering a neighbor
ing cell (whether the one aimed at or not), or upon failing to leave the current cell within

962 M A. AI-Ansari and R. J. Williams

o

0 ~ .~ 0
s

. -
l :~ s 0

• • !---:---:----:-...J.......:---! .
(I) (0) (e) (d)

Figure I: In these mazes, the agent is required to stan from the point marked Stan and reach the square goal cell.

a timeout period, the result of this attempt is added to the database of experiences the al
gorithm has collected, cell costs are recomputed based on the updated database, and the
process repeats. The costs are computed using a Dijkstra-like, one-pass minimax version
of dynamic programming. The algorithm terminates upon entering the goal cell.

If at any point the algorithm determines that it can not proceed because the agent is in
a losing cell, each cell lying on the boundary between losing and winning cells is split
across the dimension in which it is largest and all experiences involving cells that are split
are discarded. Since parti-game assumes, in the absence of evidence to the contrary, that
from any given cell every neighboring cell is reachable, discarding experiences in this way
encourages exploration of the newly created cells.

2 PARTITIONING ONLY LOSING CELLS

The win-lose boundary mentioned above represents a barrier the algorithm perceives that
is preventing the agent from reaching the goal. The reason behind partitioning cells along
this boundary is to increase the resolution along these areas that are crucial to reaching the
goal and thus creating more regions along this boundary for the agent to try to get through.
By partitioning on both sides of the boundary, parti-game guarantees that neighboring cells
along the boundary remain close in size. Along with the strategy of aiming towards cen
ters of neighboring cells, this produces pairings of winner-loser cells that form proposed
"corridors" for the agent to try to go through to penetrate the barrier it perceives.

In this section we investigate doing away with partitioning on the winning side, and only
partition losing cells. Because partitioning can only be triggered with the agent on the
losing side of the win-lose boundary, partitioning only losing cells would still give the
agent the same kind of access to the boundary through the newly formed cells. However,
this would result in a size disparity between winner- and loser-side cells and, thus, would
not produce the winner side of the pairings mentioned above. To produce a similar effect to
the pairings of parti-game, we change the aiming strategy of the algorithm. Under the new
strategy, when the agent decides to go from the cell it currently occupies to a neighboring
one, it aims towards the center point of the common surface between the two cells. While
this does not reproduce the same line of motion of the original aiming strategy exactly, it
achieves a very similar objective.

Parti-game's success in high-dimensional problems stems from its variable resolution strat
egy, which partitions finely only in regions where it is needed. By limiting partitioning to
losing cells only, we hope to increase the resolution in even fewer parts of the state space
and thereby make the algorithm even more efficient.

To compare the performance of parti-game to the modified algorithm, we applied both al
gorithms to the set of continuous mazes shown in Figure 1. For all maze problems we used
a simple local controller that can move directly toward the specified target state. We also

Robust, Efficient Reiriforcement Learning with the Parti-Game Algorithm 963

Figure 2: An ice puck on a hill. The puck can thrust horizontally to the left and to the right with a maximum force of I Newton.
The state space is two-dimensional consisting of the horizontal position and velocity. The agent starts at the position marked Start
at velocity zero and its goal is to reach the position marked Goal at velocity zero. Maximum thrust is not adequate to get the puck
up the ramp so it has to learn to move to the left first to build up momentum

Figure 3: A nine degree of freedom, snake-like arm that moves in a plane and is fixed at one tip, as depicted in Figure 3. The
objective is to move the arm from the start configuration to the goal one, which requires curling and uncurling to avoid the barrier
and the wall.

applied both algorithms to the non-linear dynamics problem of the ice puck on a hill, de
picted in Figure 2, which has been studied extensively in reinforcement learning literature.
We used a local controller very similar to the one described in Moore and Atkeson (1995).
Finally, we applied the algorithm to the nine-degree of freedom planar robot introduced in
Moore and Atkeson (1995) and shown in Figure 3 and we used the same local controller
described there. Additional results on the Acrobot problem (Sutton and Barto 1998) were
not included here for space limitations but can be found in AI-Ansari and Williams (1998).

We applied both algorithms to each of these problems, in each case performing as many
trials as was needed for the solution to stabilize. The agent was placed back in the start
state at the end of each trial. In the puck problem, the agent was also reset to the start
state whenever it hit either of the barriers at the bottom and top of the slope. The results are
shown in Table 1. The table compares the number of trials needed, the number of partitions,
total number of steps taken in the world, and the length of the final trajectory.

The table shows that the new algorithm indeed resulted in fewer total partitions in all prob-

,
1 1 .1

, ·
"--t-""

f- I mtm

\
ft-

!
1\ · I

"'"
-·

~

1\ · /1 I

~ - f-

· c-

· · I

, I
f-

, , .
(a) (b) (e)

Figure 4: The final trial of applying the various algorithms to the maze in Figure 1 (a). (a) parti-game. (b) parti-game with
partitioning only losing cells and (c) parti-game with partitioning only the largest losing cells.

964 M A. AI-Ansari and R. J. Williams

·
·
·
·
· I

I 0

·
Figure 5: Parti-game needed 1194 partitions to reach the goal in the maze of Figure l(d).

lems. It also improved in all problems in the number of trials required to stabilization_ It
improved in all but one problem (maze d) in the length of the final trajectory, however the
difference in length is very small. Finally, it resulted in fewer total steps taken in three of
the six problems, but the total steps taken increased in the remaining three.

To see the effect of the modification in detail, we show the result of applying parti-game and
the modified algorithm on the maze of Figure l(a) in Figures 4(a) and 4(b), respectively.
We can see how areas with higher resolution are more localized in Figure 4(b).

3 BALANCED PARTITIONING

Upon close observation of Figure 4(a), we see that parti-game partitions very finely along
the right wall of the maze. This behavior is even more clearly seen in parti-game's solution
to the maze in Figure l(d), which is a simple maze with a single barrier between the start
state and the goal. As we see in Table 1, parti-game has a very hard time reaching the goal
in this maze. Figure 5 shows the 1194 partitions that parti-game generated in trying to reach
the goal. We can see that partitioning along the barrier is very uneven, being extremely fine
near the goal and growing coarser as the distance from the goal increases. Putting higher
focus on places where the highest gain could be attained if a hole is found can be a desirable
feature, but what happens in cases like this one is obviously excessive.

One of the factors contributing to this problem of continuing to search at ever-higher reso
lutions in the part of the barrier nearest the goal is that any version of parti-game searches
for solutions using an implicit trade-off between the shortness of a potential solution path
and the resolution required to find this path. Only when the resolution becomes so fine
that the number of cells through which the agent would have to pass in this potential short
cut exceeds the number of cells to be traversed when traveling around the barrier is the
algorithm forced to look elsewhere for the actual opening.

A conceptually appealing way to bias this search is to maintain a more explicit coarse-to
fine search strategy. One way to do this is to try to keep the smallest cell size the algorithm
generates as large as possible. In addition to achieving the balance we are seeking, this
would tend to lower the total number of partitions and result in shallower tree structures
needed to represent the state space, which, in tum, results in higher efficiency.

To achieve these goals, we modified the algorithm from the previous section such that
whenever partitioning is required, instead of partitioning all losing cells, we only partition
those among them that are of maximum size. This has the effect of postponing splits that
would lower the minimum cell size as long as possible. The results of applying the modified
algorithm on the test problems are also shown in Table 1.

Comparing the results of this version of the algorithm to those of partitioning all losing cells

Robust. Efficient Reinforcement Learning with the Parti-Game Algorithm 965

,

: ~ ·
·
· /
· \ I I I

~ \.P
,

(a) (b)

Figure 6: The result of partitioning largest cells on the losing side in the maze of Figure I (d). Only two nials are required to
stabilize. The first requires 1304 steps and 21 partitions. The second nial adds no new partitions and produces a path of only 165
steps.

Problem Algorithm Trials Partitions Total Final I
Steps Trajectory

Length

maze a original parti-game 3 444 35131 279
partition losing side 3 239 16652 256
partition largest losing 3 27 1977 270

mazeb original parti-game 6 98 5180 183
partition losing side 5 76 7187 175
partition largest losing 6 76 5635 174

mazec original parti-game 3 176 7768 416
partition losing side 2 120 10429 165
partition largest losing 2 96 6803 165

mazed original parti-game 2 1194 553340 149
partition losing side 2 350 18639 155
partition largest losing 2 21 1469 165

puck original parti-game 6 80 6764 240
parti tion losing side 2 18 3237 151
partition largest losing 2 18 3237 lSI

nine- original parti-game 25 104 2970 58
joint partition losing side 17 61 3041 56
arm partition largest losing 7 37 2694 112

Table 1: Results of applying parti-game, parti-game with partitioning only losing cells and parti-game with partitioning the largest
losing cells on three of the problem domains. Smaller numbers are better. Best numbers are shown in bold.

on the win-lose boundary shows that this algorithm improves on parti-garne's performance
even further. It outperforms the above algorithm in four problems in the total number of
partitions required, while it ties it in the remaining two. It outperforms the above algorithm
in total steps taken in five problems and ties it in one. It improves in the number of trials
needed to stabilize in one problem, ties the above algorithm in four cases and ties parti
game in the remaining one. In the length of the final trajectory, partitioning the largest
losing cells does better in one case, ties partitioning only losing cells in two cases and does
worse in three. This latter result is due to the generally larger partition sizes that result from
the lower resolution that this algorithm produces. However, the increase in the number of
steps is very minimal in all but the nine-joint arm problem.

Figure 4(c) shows the result of applying the new algorithm to the maze of Figure l(a). In
contrast to the other two algorithms depicted in the same figure, we can see that the new
algorithm partitions very uniformly around the barrier. In addition, it requires the fewest
number of partitions and total steps out of the three algorithms. Figure 6 shows that the new
algorithm vastly outperforms parti-game on the maze in Figure l(d). Here, too, it partitions
very evenly around the barrier and finds the goal very quickly, requiring far fewer steps and
partitions.

966 M. A. AI-Ansari and R. J Williams

4 GLOBAL PATH IMPROVEMENT

Parti-game does not claim to find optimal solutions. As we see in Figure 4, parti-game and
the two modified algorithms settle on the longer of the two possible routes to the goal in
this maze. In this section we investigate ways we could improve parti-game so that it could
find paths of optimal form. It is important to note that we are not seeking paths that are
optimal, since that is not possible to achieve using the cell shapes and aiming strategies
we are using here. By a path of optimal form we mean a path that could be continuously
deformed into an optimal path.

4.1 OTHER GRADIENTS

As mentioned above, parti-game partitions only when the agent has no winning cells to aim
for and the only cells partitioned are those that lie on the win-lose boundary. The win-lose
boundary falls on the gradient between finite- and infinite-cost cells and it appears when
the algorithm knows of no reliable way to get to the goal. Consistently partitioning along
this gradient guarantees that the algorithm will eventually find a path to the goal, if one
exists.

However, gradients across which the difference in cost is finite also exist in a state space
partitioned by parti-game (or any of the variants introduced in this paper). Like the win
lose boundary, these gradients are boundaries through which the agent does not believe
it can move directly. Although finding an opening in such a boundary is not essential to
reaching the goal, these boundaries do represent potential shortcuts that might improve the
agent's policy. Any gradient with a difference in cost of two or more is a location of such
a potentially useful shortcut.

Because such gradients appear throughout the space, we need to be selective about which
ones to partition along. There are many possible strategies one might consider using to in
corporate these ideas into parti-game. For example, since parti-game focuses on the highest
gradients only, the first thing that comes to mind is to follow in parti-game's footsteps and
assign partitioning priorities to cells along gradients based on the differences in values
across those gradients. However, since the true cost function typically has discontinuities,
it is clear that the effect of such a strategy would be to continue refining the partitioning
indefinitely along such a discontinuity in a vain search for a nonexistent shortcut.

4.2 THE ALGORITHM

A much better idea is to try to pick cells to partition in a way that would achieve balanced
partitioning, following the rationale we introduced in section 3. Again, such a strategy
would result in a uniform coarse-to-fine search for better paths along those other gradients.

The following discussion could, in principle, apply to any of the three forms of parti-game
studied up to this point. Because of the superior behavior of the version where we partition
the largest cells on the losing side, this is the specific version we report on here, and we use
the term modified parti-game to refer to it.

The way we incorporated partitioning along other gradients is as follows. At the end of any
trial in which the agent is able to go from the start state to the goal without any unexpected
results of any of its aiming attempts, we partition the largest "losing cells" (i.e., higher-cost
cells) that fall on any gradient across which costs differ by more than one. Because data
about experiences involving cells that are partitioned is discarded, the next time modified
parti-game is run, the agent will try to go through the newly formed cells in search of a
shortcut.

This algorithm amounts to simply running modified parti-game until a stable solution is

Robust, Efficient Reinforcement Learning with the Parti-Game Algorithm 967

.

. 11 1 \ I I I I

.\

.. j
' ·/1 I I I I I

• I I

Figure 7: The solution found by applying the global improvement algorithm on the maze of Figure 1 (a). The solution proceeded
exactly like that of the algorithm of section 3 until the solution in Figure 4(d) was reached. After that. eight additional iterations
were needed to find the better trajectory, resulting in 22 additional partitions, for a total of 49.

reached. At that point, it introduces new cells along some of the other gradients, and when
it is subsequently run, modified parti-game is applied again until stabilization is achieved,
and so on. The results of applying this algorithm to the maze of Figure l(a) is shown in
Figure 7. As we can see, the algorithm finds the better solution by increasing the resolution
around the relevant part of the barrier above the start state.

In the absence of information about the form of the optimal trajectory, there is no natural
termination criterion for this algorithm. It is designed to be run continually in search of
better solutions. If, however, the form of the optimal solution is known in advance, the
extra partitioning could be turned off after such a solution is found.

5 CONCLUSIONS

In this paper we have presented three successive modifications to parti-game. The combi
nation of the first two appears to improve its robustness and efficiency, sometimes dramat
ically, and generally yields better solutions. The third provides a novel way of performing
non-local search for higher quality solutions that are closer to optimal.

Acknowledgments

Mohammad AI-Ansari acknowledges the continued support of King Saud University,
Riyadh, Saudi Arabia and the Saudi Arabian Cultural Mission to the U.S.A.

References

AI-Ansari, M. A. and R. 1. Williams (1998). Modifying the parti-game algorithm for in
creased robustness, higher efficiency and better policies. Technical Report NU-CCS-
98-13, College of Computer Science, Northeastern University, Boston, MA.

Moore, A. (1994a). Variable resolution reinforcement learning. In Proceedings of the
Eighth Yale Workshop on Adaptive and Learning Systems. Center for Systems Science,
Yale University.

Moore, A. W. (1994b). The parti-game algorithm for variable resolution reinforcement
learning in multidimensional state spaces. In Proceedings of Neural Information Pro
cessing Systems Conference 6. Morgan Kaufman.

Moore, A. W. and C. O. Atkeson (1995). The parti-game algorithm for variable resolution
reinforcement learning in multidimensional state-spaces. Machine Learning 21.

Sutton, R. S. and A. O. Barto (1998). Reinforcement Learning: An Introduction. MIT Press.

