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Abstract 

The perfonnance of dedicated VLSI neural processing hardware depends 
critically on the design of the implemented algorithms. We have pre­
viously proposed an algorithm for acoustic transient classification [1]. 
Having implemented and demonstrated this algorithm in a mixed-mode 
architecture, we now investigate variants on the algorithm, using time 
and frequency channel differencing, input and output nonnalization, and 
schemes to binarize and train the template values, with the goal of achiev­
ing optimal classification perfonnance for the chosen hardware. 

1 Introduction 

At the NIPS conference in 1996 [1], we introduced an algorithm for classifying acoustic 
transient signals using template correlation. While many pattern classification systems use 
template correlation [2}, our system differs in directly addressing the issue of efficient im­
plementation in analog hardware, to overcome the area and power consumption drawbacks 
of equivalent digital systems. In the intervening two years, we have developed analog cir­
cuits and built VLSI hardware implementing both the template correlation and the frontend 
acoustic processing necessary to map the transient signal into a time-frequency representa­
tion corresponding to the template [3, 4]. In the course of hardware development, we have 
been led to reevaluate the algorithm in the light of the possibilities and the limitations of 
the chosen hardware. 

The general architecture is depicted in Figure 1 (a), and excellent agreement between simu­
lations and experimental output from a prototype is illustrated in Figure 1 (b). Issues of im­
plementation efficiency and circuit technology aside, the this paper specifically addresses 
further improvements in classification perfonnance achievable by algorithmic modifica­
tions, tailored to the constraints and strengths of the implementation medium. 
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Figure 1: (a) System architecture of the acoustic transient classifier (b) Demonstration of 
accurate computation in the analog correlator on a transient classification task. 

2 The transient classification algorithm 

The core of our architecture performs the running correlation between an acoustic input 
and a set of templates for distiguishing between Z distinct classes. A simple template 
correlation equation for the acoustic transient classification can be written: 

M N 

cz[tJ = Kz L L x[t - n, mJ pz[n, mJ (1) 
m=l n=l 

where M is the number of frequency channels of the input, N is the maximum number of 
time bins in the window, and x is the array of input signals representing the energy content 
in each of the M bandpass frequency channels. The inputs x are normalized across chan­
nels using an L-l normalization so that the correlation is less affected by volume changes 
in the input. The matrix pz contains the template pattern values for pattern z out of a total 
of Z classes; K z is a constant gain coefficient for class z, and t is the current time. This 
formula produces a running correlation Cz [tJ of the input array with the template for class 
z. A signal is classified as belonging to class z when the output Cz exceeds the output for 
all other classes at a point in time t determined by simple segmentation of the input. 

To train and evaluate the system, we used a database of 22 recorded samples of 10 different 
classes of "everyday" transients such as the sounds made by aluminum cans, plastic tubs, 
handclaps, and the like. 

Each example transient recording was processed through a thirty-two channel constant-Q 
analog cochlear filter with output taps spaced on a logarithmic frequency scale [6]. For 
the simulations, the frontend system outputs were sampled and saved to disk, then digitally 
rectified and smoothed with a lowpass filter function with a 2 ms time constant. These 
thirty-two channel outputs representing short-term average energy in each frequency band 
were decimated to 500 Hz and normalized with the function 

M+l 

x[t, mJ = y[t, mJ/ Ly[t, kJ, (2) 
k=l 

where y[t, M + 1J is a constant-valued input added to the system in order to supress noise 
in the normalized outputs during periods of silence. The additional output x[t, M + 1J 
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becomes maximum during the periods of silence and minimum during presentation of a 
transient event. This extra output can be used to detect onsets of transients, but is not used 
in the correlation computation of equation (1). 

Template values pz are learned by automatically aligning all examples of the same class in 
the training set using a threshold on the normalization output x[t, M + 1], and averaging 
the values together over N samples. starting a few samples before the point of alignment. 
Class outputs are normalized relative to one another by mUltiplying each output by a gain 
factor K z , computed from the template values using the L-2 norm function 

M N 

Kz = L LPz[n,m]2. (3) 
m=l n=l 

We evaluated the accuracy of the system with a cross-validation loop in which we train the 
system on all of the database except one example of one class, then test on that remaining 
example. repeating the test for each of the 220 examples in the database. The baseline 
algorithm gives a classification accuracy of 96.4%. 

3 Single-bit template values 

A major consideration for hardware implementations (both digital and analog) is the mem­
ory storage required by the templates, one of which is required for each class. Minimal 
storage space in terms of bits per template is practical only if the algorithm can be proved 
to perform acceptably well under decreased levels of quantization of the template values. 

At one bit per template location (i.e., M x N bits per template), the complexity of the hard­
ware is greatly simplified, but it is no longer obvious what method is best to use for learn­
ing the template values, or for calculating the per-class gains. The choice of the method is 
guided by knowledge about the acoustic transients themselves, and simulation to evaluate 
its effect on the accuracy of a typical classification task. 

4 Simulations of different zero-mean representations 

One bit per template value is a desirable goal, but realizing this goal requires reevaluating 
the original correlation equation. The input values to be correlated represent band-limited 
energy spectra, and range from zero to some maximum determined by the L-l normaliza­
tion. To determine the value of a template bit, the averaged value over all examples of the 
class in the training set must be compared to a threshold (which itself must be determined), 
or else the input itself must be transformed into a form with zero average mean value. In 
the latter method, the template value is determined by the sign of the transformed input, 
averaged over all examples of the class in the training set. 

The obvious transformations of the input which provide a vector of zero-mean signals to the 
correlator are the time derivative of each input channel, and the difference between neigh­
boring channels. Certain variations of these are possible, such as a center-surround compu­
tation of channel differences, and zero-mean combinations of time and channel differences. 
While there is evidence that center-surround mechanisms are common to neurobiological 
signal processing of various sensory modalities in the brain, including processing in the 
mammalian auditory cortex [5], time derivatives of the input are also plausible in light of 
the short time base of acoustic transient events. Indeed, there is no reason to assume a 
priori that channel differences are even meaningful on the time scale of transients. 

Table 1 shows simulation results, where classification accuracy on the cross-validation test 
is given for different combinations of continuous-valued and binary inputs and templates, 
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Table I: Simulation results with different architectures. 

Method Both Binary Both Binary (1, -1) Binary (1,0) 
Cont. Input Binary Template Template 

One-to-One 96.40% - - - -
Time Difference 85.59% 65.32% 59.46% 82.43% 81.98% 

Channel Difference 90.54% 53.60% 95.05% 94.59% 94.14% 
Center-Surround 92.79% 53.60% 95.05% 92.34% 92.34% 

and different zero-mean transformations of the input. There are several significant points 
to the results of these classification tasks. The first is to note that in spite of the fact that 
acoustic transient events are short-term and the time steps between the bins in the template 
as low as 2 ms, using time differences between samples does not yield reliable classification 
when either the input or the template or both is reduced to binary form. However, reliability 
remains high when the correlation is performed using channel differences. The implication 
is that even the shortest transient events have stable and reliable structure in the frequency 
domain, a somewhat surprising conclusion given the impulsive nature of most transients. 

Another interesting point is that we observe no significant difference between the use of 
pairwise channel differences and the more complicated center-surround mechanism (twice 
the channel value minus the value of the two neighboring channels). The slight decrease in 
accuracy for the center-surround in some instances is most likely due only to the fact that 
one less channel contributes information to the correlator than in the pairwise channel dif­
ference computation. When accuracy is constant, a hardware implementation will always 
prefer the simpler mechanism. 

Very little difference in accuracy is seen between the use of a binary (1, -1) representation 
and a binary (1,0) representation, in spite ofthe fact that all zero-valued template positions 
do not contribute to the correlation output. This lack of difference is a result of the choice 
of the L-l normalization across the input vector, which ensures that the part of the correla­
tion due to positive template values is roughly the same magnitude as that due to negative 
template values, leading to a redundant representation which can be removed without af­
fecting classification results. In analog hardware, particularly current-mode circuits, the 
(1,0) template representation is much simpler to implement. 

Time differencing of the input can be efficiently realized in analog hardware by commuting 
the time-difference calculation to the end of the correlation computation and implementing 
it with a simple switch-capacitor circuit. Taking differences between input channel values, 
on the other hand, is no so easily reduced to a simple hardware form. To find a reasonable 
solution, we simulated a number of different combinations of channel differencing and 
binarization. Table 2 shows a few examples. The first row is our standard implementation 
of channel differences using binary (1,0) templates and continuous-valued input. The 
drawback of this method in analog hardware is the matching between negative and positive 
parts of the correlation sum. We found two ways to get around this problem without greatly 
compromising the system performance: The first, shown in the second row of Table 2 is to 
add to the correlation sum only if the channel difference is positive and the template value 
is 1 (one-quadrant multiplication). Another (shown in the last row) is to add the maximum 
of each pair of channels if the template value is 1, which is preferable in that it uses the 
input values directly and does not require computing a difference at all. Unfortunately, 
it also adds a large component to the output which is related only to the total energy of 
the input and therefore is common to all class outputs, reducing the dynamic range of the 
system. 
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Table 2: Simulation results for different methods of computing channel differences 

method accuracy 
channel difference 94.14% 

one-quadrant multiply 92.34% 
maximum channel 93.69% 

5 Optimization of the classifier using per-class gains 

The per-class gain values Kz in equation (1) are optimal for the baseline algorithm when us­
ing the L-2 normalization. The same normalization applied to the binary templates (when 
the template value is assumed to be either +1 or -1) yields the same K z value for all 
classes. This unity gain on all class outputs is assumed in all the simulations of the previ­
ous section. A careful evaluation of errors from several runs indicated the possibility that 
different gains on each channel could improve recognition rates, and simple experiments 
with values tweaked by hand proved this suspicion to be true. 

To automate the process of gain optimization, we consider the templates, as determined by 
averaging together examples of each class in the training set, to be fixed. Then we compute 
the correlation between each template and the aligned, averaged inputs for each class which 
were used to generate the templates. The result is a Z x Z matrix, which we denote C, of 
expected values for the correlation between a typical example of a transient input and the 
template for its own class (diagonal elements Cii ) and the templates for all other classes 
(off-diagonal elements Cij, i '=I j). Each column of C is like the correlator outputs on 
which we make a classification decision by choosing the maximum. Therefore we wish to 
maximize Cii with respect to all other elements in the same column. The only degree of 
freedom for adjusting these values is to multiply the correlation output of each template z 
by a constant coefficient K z . This corresponds to multiplying each row of C by K z . This 
per-class gain mechanism is easily transferred to the analog hardware domain. 

In the case of continuous-valued templates, an optimal solution can be directly evaluated 
and yields the L-2 normalization. However, for all binary forms of the template and/or 
the input, direct evaluation is impossible and the solution must be found by choosing an 
error function E to minimize or maximize. The error function must assign a large error to 
any off-diagonal element in a column that approaches or exceeds the diagonal element in 
that column, but must not force the cross-correlations to arbitrarily low negative values. A 
minimizing function that fits this description is 

E = L L exp (KjCji - KiCii ). 

i #i 

(4) 

This function unfortunately has no closed-form solution for the coefficients Ki, which must 
be determined numerically using Newton-Raphson or some other iterative method. 

Improvements in the recognition rates of the classification task using this optimization of 
per-class gains is shown in Table 3, where we have considered only the case of inputs and 
templates encoding channel differences. Although the database is small, the gains of 2 to 
4% for the quantized cases are significant. For this particular simulation we used a different 
type of frontend section to verify that the performance of the correlation algorithm was 
not linked to a specific frontend architecture. To generate these performance values, we 
used sixteen channels with the inputs digitally processed through a constant-Q bandpass 
filter having a Q of 5.0 and with center frequencies spaced on a mel scale from 100Hz 
to 4500 Hz. The bandpass filtering was followed by rectification and smoothing with a 
lowpass filter function with a cutoff frequency scaled logarithmically across channels, from 
60 Hz to 600 Hz. The channel output data were decimated to a 500 Hz rate. Half of the 
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database was used to train the system, and half used to test. Performance is similar to that 
reported in the previous section in spite of the fact that the number of channels was cut in 
half, and the number of training examples was also cut in half. Slight gains in performance 
are most likely due to the cleaner digital filtering of the recorded data. 

Table 3: System accuracy with and without per-class normalization. 

binarization accuracy, optimized accuracy, non-optimized 
none 100% 100% 
template only 93% 91% 
template & input 95% 91% 

6 System Robustness 

We performed several additional experiment in addition to those covered in the previous 
sections. One of these was an evaluation of recognition accuracy as a function of the tem­
plate length N (number of time bins), to determine what is a proper size for the templates. 
The result is shown in Figure 2 (a). This curve reaches a reliable maximum at about 50 time 
bins, from which our chosen size for the hardware implementation of 64 bins provides a 
safe margin of error. However, it is interesting to note that recognition accuracy does not 
drop to that of random chance until only two time bins are used (64 bits per template), and 
accuracy is nearly 50% with only 3 time bins (96 bits per template). 
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Figure 2: (a) Effect of decreasing the number of time-bins. (b) Effect of white noise added 
to the correlator inputs. 

We made one evaluation of the robustness of the algorithm in the presence of noise by 
introducing additional white noise at the correlator inputs. The graph of Figure 2 (right) 
shows that accuracy remains high until the signal-to-noise ratio is roughly OdB. 

An interesting question to ask about the L-l normalization at the frontend is how the added 
constant normalization channel (y[t, M + 1]) affects the classification performance. If this 
channel is omitted, then the total instantaneous value of all outputs must equal the same 
value, even during periods of silence, in which low-level noise gets amplified. The nominal 
value of this channel was chosen to match the levels of noise in the transient recordings. 
For one of the cases of Table 1 (real input, binary (1,0) template, channel differencing at 
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the input), we tried two other tests, one with the normalization constant doubled, and one 
with it omitted (zero). Doubling the normalization constant had no effect on the error rate, 
while omitting it caused the accuracy to drop only from 94.1 % to 92.3%. The conclusion 
is that for large templates, random noise has a low probability of producing a spurious 
positive correlation that would be classified as a transient. The classification algorithm is 
not largely dependent on input signal normalization. 

7 Conclusions 

Starting from a template correlation architecture for acoustic transient classification tar­
geted for high-density, low-power analog VLSI implementation, we have investigated sev­
eral variants on the correlation algorithms, accounting for the strengths and constraints 
of the VLSI implementation medium while maintaining acceptable classification perfor­
mance. 

Reduction of input and templates to binary form does not significantly affect performance, 
as long as they are transformed to encode the difference in neighboring channels of the 
original filterbank frontend outputs. This suggests that acoustic transient classification is 
not only amenable to implementation in simple analog hardware, but also in reasonably 
simple digital hardware. 

In looking for zero-mean representations of the input compatible with a binary template, 
we found that computing pairwise differences between channels gives a more robust rep­
resentation than a time-differential form, as was reported previously in [1]. We have found 
that computing a center-surround function of the inputs yields virtually the same results 
as taking pairwise channel differences. Where hardware implementation is the goal, the 
pairwise difference function is preferred due to its greater simplicity. 

We have additionally shown that cross-correlations between aligned, averaged inputs and 
templates can be used with an iterative method to solve for optimal gain coefficients per 
class output, which yield better classification performance. This is a method which can be 
applied in general to all template correlation systems. 
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