
Familiarity Discrimination of Radar 
Pulses 

Eric Grangerl, Stephen Grossberg2 

Mark A. RUbin2 , William W. Streilein2 

1 Department of Electrical and Computer Engineering 
Ecole Poly technique de Montreal 

Montreal, Qc. H3C 3A 7 CAN ADA 

2Department of Cognitive and Neural Systems, Boston University 
Boston, MA 02215 USA 

Abstract 

The ARTMAP-FD neural network performs both identification 
(placing test patterns in classes encountered during training) and 
familiarity discrimination (judging whether a test pattern belongs 
to any of the classes encountered during training). The perfor­
mance of ARTMAP-FD is tested on radar pulse data obtained in 
the field, and compared to that of the nearest-neighbor-based NEN 
algorithm and to a k > 1 extension of NEN. 

1 Introduction 

The recognition process involves both identification and familiarity discrimination. 
Consider, for example, a neural network designed to identify aircraft based on their 
radar reflections and trained on sample reflections from ten types of aircraft A . . . J. 
After training, the network should correctly classify radar reflections belonging to 
the familiar classes A . .. J, but it should also abstain from making a meaningless 
guess when presented with a radar reflection from an object belonging to a different, 
unfamiliar class. Familiarity discrimination is also referred to as "novelty detection," 
a "reject option," and "recognition in partially exposed environments." 

ARTMAP-FD, an extension of fuzzy ARTMAP that performs familiarity discrimi­
nation, has shown its effectiveness on datasets consisting of simulated radar range 
profiles from aircraft targets [1, 2]. In the present paper we examine the perfor­
mance of ARTMAP-FD on radar pulse data obtained in the field , and compare it 
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to that of NEN, a nearest-neighbor-based familiarity discrimination algorithm, and 
to a k > 1 extension of NEN. 

2 Fuzzy ARTMAP 

Fuzzy ARTMAP [3] is a self-organizing neural network for learning, recognition, 
and prediction. Each input a learns to predict an output class K. During training, 
the network creates internal recognition categories, with the number of categories 
determined on-line by predictive success. Components of the vector a are scaled 
so that each ai E [0,1] (i = 1 ... M). Complement coding [4] doubles the number 
of components in the input vector, which becomes A = (a, a C ), where the ith 

component of a C is ai = (I-ad. With fast learning, the weight vector w) records the 
largest and smallest component values of input vectors placed in the /h category. 
The 2M-dimensional vector Wj may be visualized as the hyperbox R j that just 
encloses all the vectors a that selected category j during training. 

Activation of the coding field F2 is determined by the Weber law choice function 
Tj(A) =1 A 1\ Wj 1 /(0:+ 1 Wj I), where (P 1\ Q)i = min(Pi , Qj) and 1 P 1= 
L;~ 1 Pi I· With winner-take-all coding, the F2 node J that receives the largest 
Fl -+ F2 input Tj becomes active. Node J remains active if it satisfies the matching 
criterion: 1 Al\wj 1/ 1 A 1 = 1 Al\wj 1 /M > p, where p E [0,1] is the dimensionless 
vigilance parameter. Otherwise, the network resets the active F2 node and searches 
until J satisfies the matching criterion. If node J then makes an incorrect class 
prediction, a match tracking signal raises vigilance just enough to induce a search, 
which continues until either some F2 node becomes active for the first time, in 
which case J learns the correct output class label k( J) = K; or a node J that has 
previously learned to predict K becomes active. During testing, a pattern a that 
activates node J is predicted to belong to the class K = k( J). 

3 ARTMAP-FD 

Familiarity measure. During testing, an input pattern a is defined as familiar 
when a familiarity function ¢(A) is greater than a decision threshold T Once a 
category choice has been made by the winner-take-all rule, fuzzy ARTMAP ignores 
the size of the input TJ. In contrast, ARTMAP-FD uses TJ to define familiarity, 
taking 

¢(A) = TJ(A) = 1 A 1\ WJ 1 (1) 
TjlAX 1 WJ 1 ' 

where TjlAX =1 WJ 1 /(0:+ 1 WJ I)· This maximal value of TJ is attained by each 
input a that lies in the hyperbox RJ, since 1 A 1\ W J 1 = 1 W J 1 for these points. 
An input that chooses category J during testing is then assigned the maximum 
familiarity value 1 if and only if a lies within RJ. 

Familiarity discrimination algorithm. ARTMAP-FD is identical to fuzzy 
ARTMAP during training. During testing, ¢(A) is computed after fuzzy ARTMAP 
has yielded a winning node J and a predicted class K = k(J). If ¢(A) > I, 
ARTMAP-FD predicts class K for the input a. If ¢(A) ::; I, a is regarded as 
belonging to an unfamiliar class and the network makes no prediction. 

Note that fuzzy ARTMAP can also abstain from classification, when the baseline 
vigilance parameter 15 is greater than zero during testing. Typically 15 = ° during 
training, to maximize code compression. In radar range profile simulations such 
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as those described below, fuzzy ARTMAP can perform familiarity discrimination 
when p > 0 during both training and testing. However, accurate discrimination 
requires that p be close to 1, which causes category proliferation during training. 

Range profile simulations have also set p = 0 during both training and testing, but 
with the familiarity measure set equal to the fuzzy ARTMAP match function: 

(2) 

This approach is essentially equivalent to taking p = 0 during training and p > 0 
during testing, with p =,. However, for a test set input a E RJ, the function 
defined by (2) sets ¢(A) =1 w J 1 / M, which may be large or small although a is 
familiar. Thus this function does not provide as good familiarity discrimination as 
the one defined by (1), which always sets ¢(A) = 1 when a E RJ. Except as noted , 
all the simulations below employ the function (1), with p = O. 

Sequential evidence accumulation. ART-EMAP (Stage 3) [5] identifies a test 
set object's class after exposure to a sequence of input patterns, such as differing 
views, all identified with that one object. Training is identical to that of fuzzy 
ART MAP, with winner-take-all coding at F2 . ART-EMAP generally employs dis­
tributed F2 coding during testing. With winner-take-all coding during testing as 
well as training, ART-EMAP predicts the object's class to be the one selected by the 
largest number of inputs in the sequence. Extending this approach, ARTMAP-FD 
accumulates familiarity measures for each predicted class K as the test set sequence 
is presented. Once the winning class is determined, the object's familiarity is de­
fined as the average accumulated familiarity measure of the predicted class during 
the test sequence. 

4 Familiarity discrimination simulations 

Since familiarity discrimination involves placing an input into one of two sets, fa­
miliar and unfamiliar, the receiver operating characteristic (ROC) formalism can 
be used to evaluate the effectiveness of ARTMAP-FD on this task. The hit rate 
H is the fraction of familiar targets the network correctly identifies as familiar and 
the false alarm rate F is the fraction of unfamiliar targets the network incorrectly 
identifies as familiar. An ROC curve is a plot of H vs. F, parameterized by the 
threshold'Y (i.e., it is equivalent to the two curves Fh) and Hh)) . The area under 
the ROC curve is the c-index, a measure of predictive accuracy that is independent 
of both the fraction of positive (familiar) cases in the test set and the positive-case 
decision threshold 'Y. 

An ARTMAP-FD network was trained on simulated radar range profiles from 18 
targets out of a 36-target set (Fig. la). Simulations tested sequential evidence 
accumulation performance for 1, 3, and 100 observations, corresponding to 0.05, 
0.15, and 5.0 sec. of observation (smooth curves, Fig. Ib) . As in the case of 
identification [6], a combination of multiwavelength range profiles and sequential 
evidence accumulation produces good familiarity discrimination, with the c-index 
approaching 1 as the number of sequential observations grows. 

Fig. Ib also demonstrates the importance of the proper choice of familiarity mea­
sure. The jagged ROC curve was produced by a familiarity discrimination simula­
tion identical to that which resulted in the IOO-sequential-view smooth curve, but 
using the match function (2) instead of ¢ as given by (1). 
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Figure l:(a) 36 simulation targets with 6 wing positions and 6 wing lengths, and 100 
scattering centers per target. Boxes indicate randomly selected familiar targets. (b) ROC 
curves from ARTMAP-FD simulations, with multiwavelength range profiles having 40 
center frequencies. Sequential evidence accumulation for 1, 3 and 100 views uses familiarity 
measure (1) (smooth curves); and for 100 views uses the match function (2) (jagged curve). 
(c) Training and test curves of miss rate M = (1- H) and false alarm rate F vs threshold 
1', for 36 targets and one view, Training curves intersect at the point where "y = r p 

(predicted); and test curves intersect near the point where l' = ra (optimal). The training 
curves are based on data from the first training epoch, the test curves on data from 3 
training epochs. 

5 Familiarity threshold selection 

When a system is placed in operation, one particular decision threshold 'Y = r must 
be chosen. In a given application, selection of r depends upon the relative cost 
of errors due to missed targets and false alarms. The optimal r corresponds to a 
point on the parameterized ROC curve that is typically close to the upper left-hand 
corner of the unit square, to maximize correct selection of familiar targets (H) while 
minimizing incorrect selection of unfamiliar tar gets (F) . 

Validation set method. To determine a predicted threshold r p , the training 
data is partitioned into a training subset and a validation subset. The network 
is trained on the training subset, and an ROC curve (F(r) , H(r)) is calculated 
for the validation subset. r p is then taken to be the point on the curve that 
maximizes [H(r) - F(r)]. (For ease of computation the symmetry point on the 
curve, where 1 - H('y) = F(r), can yield a good approximation.) For a familiarity 
discrimination task the validation set must include examples of classes not present 
in the training set. Once rp is determined , the training subset and validation subset 
should be recombined and the network retrained on the complete training set. The 
retrained network and the predicted threshold r p are then employed for familiarity 
discrimination on the test set. 

On-line threshold determination. During ARTMAP-FD training, category 
nodes compete for new patterns as they are presented. When a node J wins the 
competition, learning expands the category hyperbox RJ enough to enclose the 
training pattern a. The familiarity measure ¢ for each training set input then be­
comes equal to 1. However, before this learning takes place, ¢ can be less than 1, 
and the degree to which this initial value of ¢ is less than 1 reflects the distance 
from the training pattern to RJ. An event of this type- a training pattern success­
fully coded by a category node-is taken to be representative of familiar test-set 
patterns. The corresponding initial values of ¢ are thus used to generate a training 
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hit rate curve, where H("() equals the fraction of training inputs with cp > ,. 

What about false alarms? By definition, all patterns presented during training are 
familiar. However, a reset event during training (Sec. 2) resembles the arrival of 
an unfamiliar pattern during testing. Recall that a reset occurs when a category 
node that predicts class K wins the competition for a pattern that actually belongs 
to a different class k. The corresponding values of cp for these events can thus be 
used to generate a training false-alarm rate curve, where F("() equals the fraction 
of match-tracking inputs with initial cp > "(. 

Predictive accuracy is improved by use of a reduced set of cp values in the training­
set ROC curve construction process. Namely, training patterns that fall inside 
RJ, where cp = I, are not used because these exemplars tend to distort the miss 
rate curve. In addition, the first incorrect response to a training input is the best 
predictor of the network's response to an unfamiliar testing input, since sequential 
search will not be available during testing. Finally, giving more weight to events 
occurring later in the training process improves accuracy. This can be accomplished 
by first computing training curves H("() and F("() and a preliminary predicted 
threshold r p using the reduced training set; then recomputing the curves and r p 

from data presented only after the system has activated the final category node 
of the training process (Fig. Ic). The final predicted threshold r p averages these 
values. This calculation can still be made on-line, by taking the "final" node to be 
the last one activated. 

Table I shows that applying on-line threshold determination to simulated radar 
range profile data gives good predictions for the actual hit and false alarm rates, H A 

and FA. Furthermore, the HA and FA so obtained are close to optimal, particularly 
when the ROC curve has a c-index close to one. The method is effective even when 
testing involves sequential evidence accumulation, despite the fact that the training 
curves use only single views of each target. 

6 NEN 

Near-enough-neighbor (NEN) [7, 8] is a familiarity discrimination algorithm based 
on the single nearest neighbor classifier. For each familiar class K, the familiarity 
threshold t:l.K is the largest distance between any training pattern of class K and 
its nearest neighbor also of class K. During testing, a test pattern is declared 
unfamiliar if the distance to its nearest neighbor is greater than the threshold t:l.K 
corresponding to the class K of that nearest neighbor. 

We have extended NEN to k > I by retaining the above definition of the t:l.K's, 
while taking the comparison during testing to be between t:l.K and the distance 
between the test pattern and the closest of its k nearest neighbors which is of the 
class K to which the test pattern is deemed to belong. 

7 Radar pulse data 

Identifying the type of emitter from which a radar signal was transmitted is an 
important task for radar electronic support measures (ESM) systems. Familiarity 
discrimination is a key component of this task, particularly as the continual prolif­
eration of new emitters outstrips the ability of emitter libraries to document every 
sort of emitter which may be encountered. 

The data analyzed here, gathered by Defense Research Establishment Ottawa, con-
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3x3 6x6 6x6* 
actual optimal actual optimal actual optimal 

hit rate 0.81 0.86 0.77 0.77 0.99 0.98 
false alarm rate 0.11 0.14 0.24 0.23 0.06 0.02 
accuracy 0.95 1.00 0.93 1.00 1.00 1.00 

Table 1: Familiarity discrimination, using ARTMAP-FD with on-line threshold predic­
tion, of simulated radar range profile data. Training on half the target classes (boxed 
"aircraft" in Fig. la) , testing on all target classes. (In 3x3 case, 4 classes out of 9 to­
tal used for training.) Accuracy equals the fraction of correctly-classified targets out of 
familiar targets selected by the network as familiar. The results for the 6x6' dataset in­
volve sequential evidence accumulation, with 100 observations (5 sec.) per test target. 
Radar range profile simulations use 40 center frequencies evenly spaced between 18GHz 
and 22GHz, and wp x wl simulated targets , where wp =number of wing positions and 
wi =number of wing lengths. The number of range bins (2/3 m. per bin) is 60 , so each 
pattern vector has (60 range bins) x (40 center frequencies) = 2400 components. Training 
patterns are at 21 evenly spaced aspects in a 10° angular range and, for each viewing 
angle, at 15 downrange shifts evenly spaced within a single bin width. Testing patterns 
are at random aspects and downrange shifts within the angular range and half the total 
range profile extent of (60 bins) x (2/3 m.) =40 m. 

method ARTMAP-FD NEN 
city-block metric Euclidean metric 

k-l k-5 k - 25 k-l k-5 k - 25 
hit rate 0.95 0.94 0.94 0.93 0.94 0.93 0.92 
f. a. rate 0.02 0.13 0.04 0.02 0.14 0.05 0.02 
accuracy 1.00 1.00 1.00 1.00 0.99 1.00 1.00 

[memory [I 21 II 446 

Table 2: Familiarity discrimination of radar pulse data set, using ARTMAP-FD and NEN 
with different metrics and values of k. Figure given for memory is twice number of F2 
nodes (due to complement coding) for ARTMAP-FD, number of training patterns for 
NEN. Training (single epoch) on first three quarters of data in classes 1-9, testing on other 
quarter of data in classes 1-9 and all data in classes 10-12. (Values given are averages 
over four cyclic permutations of the the 12 classes.) ARTMAP-FD familiarity threshold 
determined by validation-set method with retraining. 

sist of radar pulses from 12 ship borne navigation radars [9]. Fifty pulses were 
collected from each radar, with the exception of radars #7 (100 pulses) and #8 
(200 pulses). The pulses were preprocessed to yield 800 I5-component vectors. with 
the components taking values between a and l. 

8 Results 

From Table 2, ARTMAP-FD is seen to perform effective familiarity discrimination 
on the radar pulse data. NEN (k = 1) performs comparatively poorly. Extensions 
of NEN to k > 1 perform well. During fielded operation these would incur the 
cost of the additional computation required to find the k nearest neighbors of the 
current test pattern , as well as the cost of higher memory requirements] relative to 
ARTMAP-FD. The combination of low hit rate with low false alarm rate obtained 
by NEN on the simulated radar range profile datasets (Table 3) suggests that the 
algorithm performs poorly here because it selects a familiarity threshold which is 

1 The memory requirements of kNN pattern classifiers can be reduced by editing 
techniques[8], but how the use of these methods affects performance of kNN-based fa­
miliarity discrimination methods is an open question. 
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method II ARTMAP -FD Ill-rk -----.-1 .,.....,_...-,--,-N_E ...... N....,..-...--.-_..---r-.----..-i 
__ __ k - 5 k - 99 k - 1 I k - 5 

dataset II 3x3 I 6x6 II 3x3 6x6 
hit rate 0.81 0.77 0.11 0.11 0.11 0.14 0.14 
false alarm rate 0.11 0.24 0.00 0.00 0.00 0.00 0.00 
accuracy 0.95 0.93 1.00 1.00 1.00 1.00 1.00 

I memory II 12 I 88 II 1260 5670 

Table 3: Familiarity discrimination of simulated radar range profiles using ARTMAP-FD 
and NEN with different values of k. Training and testing as in Table 1. ARTMAP-FD 
familiarity threshold determined by on-line method. City-block metric used with NEN; 
results with Euclidean metric were slighlty poorer. 

too high. ARTMAP-FD on-line threshold selection, on the other hand, yields a 
value for the familiarity threshold which balances the desiderata of high hit rate 
and low false alarm rate. 
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