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Abstract 

We previously proposed a quantitative model of early visual pro­
cessing in primates, based on non-linearly interacting visual filters 
and statistically efficient decision. We now use this model to inter­
pret the observed modulation of a range of human psychophysical 
thresholds with and without focal visual attention. Our model -
calibrated by an automatic fitting procedure - simultaneously re­
produces thresholds for four classical pattern discrimination tasks, 
performed while attention was engaged by another concurrent task. 
Our model then predicts that the seemingly complex improvements 
of certain thresholds, which we observed when attention was fully 
available for the discrimination tasks, can best be explained by a 
strengthening of competition among early visual filters. 

1 INTRODUCTION 

What happens when we voluntarily focus our attention to a restricted part of our 
visual field? Focal attention is often thought as a gating mechanism, which selec­
tively allows a certain spatial location and and certain types of visual features to 
reach higher visual processes. We here investigate the possibility that attention 
might have a specific computational modulatory effect on early visual processing. 

We and others have observed that focal visual attention can modulate human psy­
chophysical thresholds for simple pattern discrimination tasks [7, 8, 5] When atten­
tion is drawn away from a task, for example by "cueing" [12] to another location 
of the display, or by a second, concurrent task [1, 7, 8], an apparently complex 
pattern of performance degradation is observed: For some tasks, attention has lit­
tle or no effect on performance (e.g., detection of luminance increments), while for 
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other tasks, attention dramatically improves performance (e.g., discrimination of 
orientation). Our specific findings with dual-task psychophysics are detailed below. 

These observations have been paralleled by electrophysiological studies of attention. 
In the awake macaque, neuronal responses to attended stimuli can be 20% to 100% 
higher than to otherwise identical unattended stimuli. This has been demonstrated 
in visual cortical areas VI, V2, and V4 [16, 11, 10,9] when the animal discriminates 
stimulus orientation, and in areas MT and MST when the animal discriminates the 
speed of stimulus motion [17]. Even spontaneous firing rates are 40% larger when 
attention is directed at a neuron's receptive field [9]. Whether neuronal responses 
to attended stimuli are merely enhanced [17] or whether they are also more sharply 
tuned for certain stimulus dimensions [16] remains controversial. Very recently, 
fMRI studies have shown similar enhancement (as measured with BOLD contrast) 
in area VI of humans, specifically at the retinotopic location where subjects had 
been instructed to focus their attention to [2, 14]. 

All of these observations directly address the issue of the "top-down" computational 
effect of attentional focusing onto early visual processing stages. This issue should 
be distinguished from that of the "bottom-up" control of visual attention [6], which 
studies which visual features are likely to attract the attention focusing mecha­
nism (e.g., pop-out phenomena and studies of visual search). Top-down attentional 
modulation happens after attention has been focused to a location of the visual 
field, and most probably involves the massive feedback circuits which anatomically 
project from higher cortical areas back to early visual processing areas. 

In the present study, we quantify the modulatory effect of attention observed in 
human psychophysics using a model of early visual processing. The model is based 
on non-linearly interacting visual filters and statistically efficient decision [4, 5]. 
Although attention could modulate virtually any visual processing stage (e.g ., the 
decision stage, which compares internal responses from different stimuli), our basic 
hypothesis here - supported by electrophysiology and fMRI [16,11,10,17,9,2, 14]­
is that this modulation might happen very early in the visual processing hierarchy. 
Given this basic hypothesis, we investigate how attention should affect early visual 
processing in order to quantitatively reproduce the psychophysical results. 

2 PSYCHOPHYSICAL EXPERIMENTS 

We measured attentional modulation 
of spatial vision thresholds using a 
dual-task paradigm [15, 7]: At the 
center of the visual field, a letter dis­
crimination task is presented, while 
a pattern discrimination task is si­
multaneously presented at a random 
peripheral location (40 eccentricity). 
The central task consists of discrim­
inating between five letters "T" or 
four "T" and one "L". It has been 
shown to efficiently engage attention 
[7]. The peripheral task is chosen 
from a battery of a classical pattern 
discrimination tasks, and is the task 
of interest for this study. Psychophys-

Central task: 

threshold measurement 

ical thresholds are measured for two distinct conditions: In the "fully attended" 
condition, observers are asked to devote their entire attention to the peripheral 
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task, and to ignore the central task (while still fixating the center of the screen). 
In the "poorly attended" condition, observers are asked to pay full attention to 
the central task (and the blocks of trials for which performance for the central task 
falls below a certain cut-off are discarded). 

Four classical pattern discrimination tasks were investigated, each with two volun­
teer subjects (average shown in Figure 1), similarly to our previous experiments 
[7, 8]. Screen luminance resolution was 0.2%. Screen luminance varied from 1 to 
90cd/m2 (mean 45cd/m2), room illumination was 5cd/m2 and viewing distance 
80cm. The Yes/No (present/absent) paradigm was used (one stimulus presentation 
per trial). Threshold (75% correct peformance) was reached using a staircase pro­
cedure , and computed through a maximum-likelihood fit of a Weibull function with 
two degrees of freedom to the psychometric curves. 

Exp. 2: Orientation discrimination 
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Figure 1: Psychophysical data and model fits using the parameters from Table 1 
(P=poorly and F=fully attended). Gray curves: Model predictions for fully attended 
data, using the poorly attended parameters, except for -y = 2.9 and {) = 2.1 (see Results). 

Expo 1 measured increment contrast discrimination threshold: The observer dis­
criminates between a 4cpd (cycles per degree) stochastic oriented mask [7] at fixed 
contrast , and the same mask plus a low-contrast sixth-derivative-of-Gaussian (D6G) 
bar; threshold is measured for bar contrast [8]. Expo 2 measured orientation dis­
crimination thresholds: The observer discriminates between a vertical and tilted 
grating at 4cpd; threshold for the angle difference is measured. In addition, two 
contrast masking tasks were investigated for their sensitivity to non-linearities in 
visual processing. A 4cpd stochastic mask (50% contrast) was always present, and 
threshold was measured for the contrast of a vertical superimposed D6G bar. In 
Expo 3, the orientation of the masker was varied and its spatial frequency fixed 
(4cpd), while in Expo 4 the spatial period of the masker was varied and its orien­
tation vertical. Our aim was to investigate very dissimilar tasks, in particular with 
respect to the decision strategy used by the observer. 

Using the dual-task paradigm, we found mixed attentional effects on psychophysical 
thresholds, including the appearance of a more pronounced contrast discrimination 
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"dipper" in Exp. 1, substantial improvement of orientation thresholds in Exp. 2, 
and reduced contrast elevations due to masking in Exps. 3-4 (also see [7, 8]). 

3 MODEL 

The model consists of three 
successive stages [4, 5]. In 
the first stage, a bank of 
Gabor-like linear filters ana­
lyzes a fixed location of the 
visual scene. Here, a single­
scale model composed of 12 
pairs of filters in quadrature 
phase, tuned for orientations 
o E e evenly spanning 1800 , 

was sufficient to account for 
the data (although a multi­
scale model may account for 
a wider range of psychophysical thresholds). The linear filters take values between 
0.0 and 100.0, then multiplied by a gain factor A (one of the ten free parameters of 
the model), and to which a small background activity f. is added. 

In the second stage, filters non-linearly interact as follows: (1) Each unit receives 
non-linear self-excitation, and (2) each unit receives non-linear divisive inhibition 
from a pool of similarly-tuned units: With E8 being the linear response from a unit 
tuned for orientation 0, the pooled response R8 is given by: 

(/1'_/1)2 

where W8(O') = e - 2E~ 

is a Gaussian weighting function centered around 0, and 1J a positive constant to 
account for background activity in the pooling stage. This stage is inspired from 
Heeger's model of gain control in cat VI [3, 4]. Our formulation, in which none of 
the parameters is given a particular value, however allows for multiple outcomes, 
to be determined by fitting the model to our psychophysical data: A sigmoidal 
(S > 0, I > d') as well as simple power-law (S = 0) or even linear (! = 1, d' = 0) 
contrast response characteristic could emerge, the responses could be saturating 
(, = d') or not (, i= d'), and the inhibitory pool size (~8) could be broad or narrow. 
Because striate neurons are noisy, physiological noise is assumed in the model at 
the outputs of the second stage. The noise level is chosen close to what is typically 
observed in cortical pyramidal cells, and modeled by Gaussian noise with variance 
equal to mean taken to some power a determined by fitting. 

Because the decision stage - which quantitatively relates activity in the population 
of pooled noisy units to behavioral discrimination performance - is not fully char­
acterized in humans, we are not in a position to model it in any detail. Instead, 
we trained our subjects (for 2-3 hours on each task), and assume that they per­
form close to an "optimal detector". Such optimal detector may be characterized 
in a formal manner, using Statistical Estimation Theory [4, 5]. We assume that a 
brain mechanism exists, which, for a given stimulus presentation, builds an inter­
nal estimate of some stimulus attribute ( (e.g., contrast, orientation, period). The 
central assumption of our decision stage is that this brain mechanism will perform 
close to an unbiased efficient statistic T, which is the best possible estimator of ( 
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given the noisy population response from the second stage. The accuracy (vari­
ance) with which T estimates ( can be computed formally, and is the inverse of 
the Fisher Information with respect to ( [13, 4]. Simply put, this means that, from 
the first two stages of the model alone, we have a means of computing the best 
possible estimation performance for (, and consequently, the best possible discrim­
ination performance between two stimuli with parameters (1 and (2 [4, 5]. Such 
statistically efficient decision stage is implementable as a neural network [13]. 

This decision stage provides a unified framework for optimal discrimination in any 
behavioral situation, and eliminates the need for task-dependent assumptions about 
the strategy used by the observers to perform the task in a near optimal manner. 
Our model allows for a quantitative prediction of human psychophysical thresholds, 
based on a crude simulation of the physiology of primary visual cortex (area VI). 

4 RESULTS 

All parameters in the model were automatically adjusted in order to best fit the psy­
chophysical data from all experiments. A multidimensional downhill simplex with 
simulated annealing overhead was used to minimize the root-mean-square distance 
between the quantitative predictions of the model and the human data [4]. The 
best-fit parameters obtained independently for the "fully attended" and "poorly 
attended" conditions are reported in Table 1. The model's simultaneous fits to our 
entire dataset are plotted in Figure 1 for both conditions. After convergence of 
the fitting procedure, a measure of how well constrained each parameter was by the 
data was computed as follows: Each parameter was systematically varied around its 
best-fit value, in 0.5% steps, and the fitting error was recomputed; the amplitude 
by which each parameter could be varied before the fitting error increased by more 
than 10% of its optimum is noted as a standard deviation in Table 1. A lower 
deviation indicates that the parameter is more strongly constrained by the dataset. 

Table 1. Model parameters for both attentional conditions. 
Name Symbol fully attended poorly attended 
Linear gaint A l.7 ± 0.2 8.2 ± 0.9 
Activity-independent inhibition t S 14.1 ± 2.3 10l.5 ± 16.6 
Excitatory exponent 'Y 3.36 ± 0.02 2.09 ± 0.01 
Inhibitory exponent 6 2.48 ± 0.02 l.51 ± 0.02 
Noise exponent a l.34 ± 0.07 1.39 ± 0.08 
Background activity, linear stage f l.13 ± 0.35 1.25 ± 0.60 
Background activity, pooling stage 7] 0.18 ± 0.05 0.77 ± 0.11 
Spatial period tuning width X (r>. 0.85 ± 0.06 oct. 0.85 ± 0.09 oct . 
Orientation tuning width X (r8 26° ± 2.4° 38° ± 5.5° 
Orientation pooling width X ~8 48° ± 25° 50° ± 26° 

t Dynamic range of linear filters is [€ ... 100.0 X A + 4 
x For clarity, FWHM values are given rather than 17 values (FWHM = 2I7J2ln(2». 

Although no human bias was introduced during the fitting procedure, interestingly, 
all of the model's internal parameters reached physiologically plausible best-fit val­
ues, such as, for example, slightly supra-Poisson noise level (a ~ 1.35), ~ 30° 
orientation tuning FWHM (full-width at half-maximum), and ~ 0.85 octave spa­
tial period tuning FWHM. Some of the internal characteristics of the model which 
more closely relate to the putative underlying physiological mechanisms are shown 
in Figure 2. 
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Figure 2: Internals of the model. (a) The response function of individual units to contrast 
was sigmoidal under full (F) and almost linear under poor (P) attention. (b) Native linear 
orientation tuning was broader under poor (NP) than full (NF) attention, but it was 
sharpened in both cases by pooling (PP=pooled poor, and PF=pooled full attention). (c) 
There was no difference in orientation pooling width under poor (P) or full (F) attention. 
Using poorly attended parameters, except for -y = 2.9 and ~ = 2.1 (grey curves), yielded 
steep non-linear contrast response, and intermediary tuning (same width as NF). 

In Table 1, attention had the following significant effects on the model's param­
eters: 1) Both pooling exponents (-y, d) were higher; 2) the tuning width (0"/1) was 
narrower; 3) the linear gain (A) and associated activity-independent inhibition (5) 
were lower; and 4) the background activity of the pooling stage was lower. This 
yielded increased competition between filters: The network behaved more like a 
winner-take-all under full attention, and more like a linear network of independent 
units under poor attention. While the attentional modulation of "d and 0"/1 are 
easy to interpret, its effect on the A, 5 and 'fJ is more difficult to understand. 

Consequently, we conducted a further automatic fit, which, starting from the 
"poorly attended" parameters, was only allowed to alter, and d to fit the "fully 
attended" data. The motivation for not varying 0"/1 was that we observed significant 
sharpening of the tuning induced by higher exponents "d (Figure 2) . Also, slight 
changes in the difference , - d can easily produce large changes in the overall gain 
of the system, hence compensating for changes in A, 5 and 'fJ . (We however do not 
imply here that 0"/1, A, 5 and 'fJ are redundant parameters; there is only a small range 
around the best-fit point over which, and d can compensate for variations in the 
other parameters, without dramatically impairing the quality of fit) . 

Although the new fit was not as accurate as that obtained with all parameters 
allowed to vary, it appeared that a simple modification of the pooling exponents 
well captured the effect of attention (Figure 1). Hence, the "poorly attended" 
parameters of Table 1 well described the "poorly attended" data, and the same 
parameters except for, = 2.9 and d = 2.1 well described the "fully attended" data. 

A variety of other simple parameter modifications were also tested, but none except 
for the pooling exponents (-y,o) could fully account for the attentional modulation. 
These modifications include: Changes in gain (obtained by modifying A only, , 
only, or d only), in tuning (0"/1), in the extent ofthe inhibitory pool (E/I), and in the 
noise level (a). A more systematic study, in which all possible parameter subsets 
are successively examined, is currently in progress in our laboratory. 

5 DISCUSSION and CONCLUSION 

At the basis of our results is the hypothesis that attention might modulate the 
earlier rather than the later stages of visual processing. We found that a very 
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simple, prototypical, task-independent enhancement of the amount of competition 
between early visual filters accounts well for the human data. This enhancement 
resulted from increases in parameters 'Y and 5 in the model, and was paralleled by 
an increase in contrast gain and a sharpening in orientation tuning. Although it is 
not possible from our data to rule out any attentional modulation at later stages, 
our hypothesis has recently received experimental support that attention indeed 
modulates early visual processing in humans [2, 14]. 

More psychophysical experiments are needed to investigate attentional modulation 
at later processing stages. For example, it might be possible to study the effect 
of attention on the decision stage by manipulating attention during experiments 
involving decision uncertainty. In the absence of such results, we have attempted 
in our experiments to minimize the possible impact of attention on later stages, 
by using only simple stimulus patterns devoid of conceptual or emotional meaning, 
such as to involve as little as possible the more cognitive stages of visual processing. 

Our finding that attention may increase the amount of competition between early 
visual filters is accompanied by an enhancement of the gain and sensitivity of the 
filters, and by a sharpening of their tuning properties. The existence of two such 
processing states - one, more sensitive and selective inside the focus of attention, 
and the other, more broadly-tuned and non-specific outside - can be justified by 
at least two observations: First, the higher level of activity in attended neurons 
consumes more energy, which may not be desirable over the entire extent of visual 
cortices. Second, although less efficient for fine discriminations, the broadly-tuned 
and non-specific state may have greater ability at catching unexpected, non-specific 
visual events. In this perspective, this state would be desirable as an input to 
bottom-up, visual alerting mechanisms, which monitor the rest of our visual world 
while we are focusing on a specific task requiring high focal accuracy. 
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