
Experimental Results on Learning Stochastic
Memoryless Policies for Partially Observable

Markov Decision Processes

John K. Williams
Department of Mathematics

University of Colorado
Boulder, CO 80309-0395

jkwillia@euclid.colorado.edu

Abstract

Satinder Singh
AT &T Labs-Research

180 Park Avenue
Florham Park, NJ 07932
baveja@research.att.com

Partially Observable Markov Decision Processes (pO "MOPs) constitute
an important class of reinforcement learning problems which present
unique theoretical and computational difficulties. In the absence of the
Markov property, popular reinforcement learning algorithms such as
Q-Iearning may no longer be effective, and memory-based methods
which remove partial observability via state-estimation are notoriously
expensive. An alternative approach is to seek a stochastic memoryless
policy which for each observation of the environment prescribes a
probability distribution over available actions that maximizes the
average reward per timestep. A reinforcement learning algorithm
which learns a locally optimal stochastic memoryless policy has been
proposed by Jaakkola, Singh and Jordan, but not empirically verified.
We present a variation of this algorithm, discuss its implementation,
and demonstrate its viability using four test problems.

1 INTRODUCTION

Reinforcement learning techniques have proven quite effective in solving Markov
Decision Processes ("MOPs), control problems in which the exact state of the
environment is available to the learner and the expected result of an action depends only
on the present state [10]. Algorithms such as Q-Iearning learn optimal deterministic
policies for "MOPs----rules which for every state prescribe an action that maximizes the
expected future reward. In many important problems, however, the exact state of the
environment is either inherently unknowable or prohibitively expensive to obtain, and
only a limited, possibly stochastic observation of the environment is available. Such

1074 1. K. Williams and S. Singh

Partially Observable Markov Decision Processes (POMDPs) [3 ,6] are often much more
difficult than MDPs to solve [4]. Distinct sequences of observations and actions
preceding a given observation in a POMDP may lead to different probabilities of
occupying the underlying exact states of the MDP. If the efficacy of an action depends
on the hidden exact state of the environment, an optimal choice may require knowing
the past history as well as the current observation, and the problem is no longer Markov.
In light of this difficulty, one approach to solving POMDPs is to explore the
environment while building up a memory of past observations, actions and rewards
which allows estimation of the current hidden state [1]. Such methods produce
deterministic policies, but they are computationally expensive and may not scale well
with problem size. Furthermore, policies that require state-estimation using memory
may be complicated to implement.

Memoryless policies are particularly appropriate for problems in which the state is
expensive to obtain or inherently difficult to estimate, and they have the advantage of
being extremely simple to act upon. For a POMDP, the optimal memoryless policy is
generally a stochastic policy-one which for each observation of the environment
prescribes a probability distribution over the available actions. In fact, examples of
POMDPs can be constructed for which a stochastic policy is arbitrarily better than the
optimal deterministic policy [9] . An algorithm proposed by Jaakkola, Singh and Jordan
OSJ) [2], which we investigate here, learns memoryless stochastic policies for POMDPs.

2 POMDPs AND DIFFERENTIAL-REWARD Q-VALUES

We assume that the environment has discrete states S = {s1, S2, .. IV}, and the learner
chooses actions from a set f4. State transitions depend only on the current state s and the
action a taken (the Markov property); they occur with probabilities r(s,sl) and result in
expected rewards K'(s,s} In a POMDP, the learner cannot sense exactly the state s of
the enVironment, but rather perceives only an observation--or "message"-from a set
:M = {m1, m2, .. mM} according to a conditional probability distribution P(mls). The
learner will in general not know the size of the underlying state space, its transition
probabilities, reward function, or the conditional distributions of the messages.

In MDPs, there always exists a policy which simultaneously maximizes the expected
future reward for all states, but this is not the case for POMDPs [9]. An appropriate
alternative measure of the merit of a stochastic POMDP policy 7Z{alm) is the asymptotic
average reward per timestep, R7r, that it achieves. In seeking an optimal stochastic
policy, the JSJ algorithm makes use of Q-values determined by the infinite-horizon
differential reward for each observation-action pair (m,a). In particular, if rr denotes the
reward obtained at time t, we may define the differential-reward Q-values by

Q7r(s,a)= LE7r [Ii _R7r I S1 =s,a1 = a]; Q7r(m,a)= E s [Q7r(s,a)IM(s)=m](l)
1=1

where M is the observation operator. Note that E[rr] ~ R7r as t ~ 00, so the summand
converges to ~ero. The value functions V7r(s) and V7r(m) may be defined similarly.

3 POLICY IMPROVEMENT

The JSJ algorithm consists of a method for evaluating Q7r and V7r and a mechanism for
using them to improve the current policy. Roughly speaking, if Q7r(m,a) > V7r(m), then
action a realized a higher differential reward than the average for observation m, and
assigning it a slightly greater probability will increase the average reward per timestep,
R7r. We interpret the quantities ~m(a) = Q7r(m,a) - V7r(m) as comprising a "gradient" of
R7r in policy space. Their projections onto the probability simplexes may then be written

An Algorithm which Learns Stochastic Memoryless Policies for POMDPs 1075

as 8m = Llm -<Llm,l> 11/JIl, where 1 is the one-vector (1,1, ... ,1), <, > is the inner product,
and IJIl is the number of actions, or

8 1 ~ 1 R
mea) = Llm(a) - IAI LLlm (a') = Q (m,a) - -IAI LQ (m, a').

a'EA a'EA
(2)

For sufficiently small E;n, an improved policy 1l'(alm) may be obtained by the increments

1l'(a/m) = 1l(alm) + E;n 8m(a) . (3)

In practice, we also enforce 1l'(alm) ~ P min for all a and m to guarantee continued
exploration. The original JSJ algorithm prescribed using Llm(a) in place of 8m(a) in
equation (3), followed by renormalization [2]. Our method has the advantage that a
given value of Ll yields the same incremeiu regardless of the current value of the policy,
and it ensures that the step is in the correct direction. We also do not require the
differential-reward value estimate, yR.

4 Q-EVALUATION

As the POMDP is simulated under a fixed stochastic policy 1l, every occurrence of an
observation-action pair (m, a) begins a sequence of rewards which can be used to
estimate QR(m, a). Exploiting the fact that the QR(m, a) are defined as sums, the JSJ Q
evaluation method recursively averages the estimates from all such sequences using a so
called "every-visit" Monte-Carlo method. In order to reduce the bias and variance
caused by the dependence of the evaluation sequences, a factor fJ is used to discount their
shared "tails". Specifically, at time t the learner makes observation mr , takes action ar ,

and obtains reward rr. The number of visits K(mr,ar) is incremented, the tail discount
rate rem, a) = 1-K(m, arl/4, and the following updates are performed (the indicator
function x.:Cm, a) is 1 if (m,a) = (mr,ar) and 0 otherwise).

fJ [%r(m,a)] fJ %r(m,a)
(m,a)= 1- K(m,a) r(m,a) (m,a)+ K(m,a)

Q(m,a)= [1- ~~::~]Q(m, a) + fJ(m,a)[Ti - R]

(tail discount factor) (4)

(5)

C(m,a)= [1- ~f:::~]c(m,a) + fJ(m, a) (cumulative discount effect) (6)

R = (1 - lIt)R + (lit) rr (R~-estimate) (7)

Q(m, a) = Q(m, a) - C(m, a) [R - Rold]; Rold = R (QR-estimate correction) (8)

Other schedules for rem, a) are possible----see [2~and the correction provided by (8)
need not be performed at every step, but can be delayed until the Q~-estirnate is needed.

This evaluation method can be used as given for a policy-iteration type algorithm in
which independent T-step evaluations of Q~ are interspersed with policy improvements
as prescribed in section 3. However, an online version of the algorithm which performs
policy improvement after every step requires that old experience be gradually "forgotten"
so that the QR-estimate can respond to more recent experience. To achieve this, we
multiply the previous estimates of fJ, Q, and C at each timestep by a "decay" factor
a, 0 < a< 1, before they are updated via equations (4)-(6), and replace equation (7) by

R = a(l - lit) R + [1 - a(1 - lit)] r l . (9)

An alternative method, which also works reasonably well, is to multiply K and t by a at
each timestep instead.

1076

(a) (b)

A B

+1 +1 (c)

J K. Williams and S. Singh

0. ' r-- - r-- - r-- ----;,.-- ----;------;

.. j, ...
10000 20000 3 0000 40000 50000

number of iterations

0 .8

\

f 06 \..-:' ~::" ==_:::_-=-__ ::-0' ~~.~=~.-... .:.....'. '-"'-" '-"'-" .----..;...--
[0.4

0. 2

°o!:----,,;-;;coo=o-=-o --'2::::0~00:::-0 - -'3""0""00""'0 - --;:40:;';,00""0--=50000
number Of Iterations

Figure 1: (a) Schematic of confounded two-state POMDP, (b) evolution of the R7r_
estimate, and (c) evolution of n(A) (solid) and nCB) (dashed) for e= 0.0002, a= 0.9995.

5 EMPIRICAL RESULTS

We present only results from single runs of our online algorithm, including the modified
]S] policy improvement and Q-evaluation procedures described above. Results from the
policy iteration version are qualitatively similar, and statistics performed on multiple
runs verify that those shown are representative of the algorithm's behavior. To simplify
the presentation, we fix a constant learning rate, e, and decay factor, a, for each problem,
and we use P min = 0.02 throughout. Note, however, that appropriate schedules or online
heuristics for decreasing e and P min while increasing a would improve performance and
are necessary to ensure convergence. Except for the first problem, we choose the initial
policy n to be uniform. In the last two problems, values of n(alm) < 0.03 are rounded
down to zero, with renormalization, before the learned policy is evaluated.

5.1 CONFOUNDED TWO-STA TE PROBLEM

The two-state MDP diagrammed in Figure l(a) becomes a POMDP when the two states
are confounded into a single observation. The learner may take action A or B, and
receives a reward of either + 1 or -1; the state transition is deterministic, as indicated in
the diagram. Note that either stationary deterministic policy results in R7r = -1 , whereas
the optimal stochastic policy assigns each action the probability 112, resulting in R7r = O.

The evolution of the R7r-estimate and policy, starting from the initial policy n(A) = 0.1
and nCB) = 0.9, is shown in Figure 1. Clearly the learned policy approaches the optimal
stochastic policy n = (112,112).

5.2 MATRIX GAME: SCISSORS-PAPER-STONE-GLASS-WATER

Scissors-Paper-Stone-Glass-Water (SPSGW), an extension of the well-known Scissors
Paper-Stone, is a symmetric zero-sum matrix game in which the learner selects a row i,
the opponent selects a column j, and the learner' s payoff is determined by the matrix
entry M(i,j). A game-theoretic solution is a stochastic (or "mixed") policy which
guarantees the learner an expected payoff of at least zero. It can be shown using linear
programming that the unique optimal strategy for SPSGW, yielding R7r = 0, is to play
stone and water with probability 1/3, and to play scissors, paper, and glass with
probability 119 [7]. Any stationary deterministic policy results in R7r = -1, since the
opponent eventually learns to anticipate the learner's choice and exploit it.

An Algorithm which Learns Stochastic Memory/ess Policiesfor POMDPs 1077

(a) stone

water paper
or:---I---\--~

scissors

(b) [0 -1 1 1 -1] 1 0 1 -1 -1
M= -1 -1 0 -1 1

-1 1 1 0 -1
1 1 -1 1 0

(c)

(d)

- 0. 4

-0 5 O~--='-=OO::::OO:-----:::20=:':O=OO"-----:::300'-!:'OO:::::---:-::40::':::OOO:::-----:5;-;::'OOOO
number of iterations

0.8

-___ ~ ~.= _______ . ______________ __ _ s __ _

%~-~1=OO~OO~~2~OO~OO~~3~OO~OO~~4~OO~OO~~50000
number of iteratio ns

Figure 2: (a) Diagram of Scissors-Paper-Stone-Glass-Water, (b) the payoff matrix,
(c) evolution of the RJr-estimate, and (d) evolution of n(stone) and n(water) (solid) and
n(scissors), n(paper), and n(glass) (dashed) for £= 0.00005, a= 0.9995.

In formulating SPSGW as a POMDP, it is necessary to include in the state sufficient
information to allow the opponent to exploit any sub-optimal strategy. We thus choose
as states the learner's past action frequencies, multiplied at each timestep by the decay
factor, a. There is only one observation, and the learner acts by selecting the "row"
scissors, paper, stone, glass or water, producing a deterministic state transition. The
simulated opponent plays the column which maximizes its expected payoff against the
estimate of the learner's strategy obtained from the state. The learner's reward is then
obtained from the appropriate entry of the payoff matrix.

The policy n = (0.1124,0.1033,0.3350,0.1117,0.3376) learned after 50,000 iterations
(see Figure 2) is very close to the optimal policy 7i = (119, 119,113,119,1/3).

5.3 PARR AND RUSSELL'S GRID WORLD

Parr and Russell's grid world [S] consists of 11 states in a 4x3 grid with a single obstacle
as shown in Figure 3(a). The learner senses only walls to its immediate east or west and
whether it is in the goal state (upper right comer) or penalty state (directly below the
goal), resUlting in the 6 possible observations (0-3, G and P) indicated in the diagram.
The available actions are to move N, E, S, or W, but there is a probability 0.1 of slipping
to either side and only O.S of moving in the deSired direction; a movement into a wall
results in bouncing back to the original state. The learner receives a reward of + 1 for a
transition into the goal state, -1 for a transition into the penalty state, and -0.04 for all
other transitions. The goal and penalty states are connected to a cost-free absorbing
state; when the learner reaches either of them it is teleported immediately to a new start
state chosen with uniform probability.

The results are shown in Figure 3. A separate 106-step evaluation of the final learned
policy resulted in RJr = 0.047. In contrast, the optimal deterministic policy indicated by
arrows in Figure 3(a) yields RJr = 0.024 [5], while Parr and Russell's memory-based
SPOVA-RL algorithm achieved RJr = 0.12 after learning for 400,000 iterations [S].

5.4 MULTI-SERVER QUEUE

At each timestep, an arriving job having type 1, 2, or 3 with probability 112, 113 or 116,
respectively, must be assigned to server A, B or C; see Figure 4(a). Each server is
optimized for a particular job type which it can complete in an expected time of 2.6

1078 J K. Williams and S. Singh

0.06

(a) (b)
0 04

"... ~

0 .02

;j' ~ ~ +1 ~ 0

0 2 2
~ - 0 .02
a:

- 0 .04

t t· - 0 .06

-1 -0.0 8
0 20000 40000 60000 80000 100000

3 0 P nurrber of itera1iorlS;

(c)

rO.91 0.02 0.36 0.52J t ~ ~ ~
7r(alm) = 8:8i 0.21 0.60 0.18

0.34 0.02 0.11
0 2 2 1 0.02 0.43 0.02 0.19

Figure 3: (a) Parr and Russell's grid world, with observations shown in lower right
corners and the optimal deterministic memoryless policy represented by arrows,
(b) evolution of the R7r-estimate, and (c) the resulting learned policy (observations 0-3
across columns, actions N, E, S, W down rows) for E= 0.02, a= 0.9999.

timesteps, while the other job types require 50% longer. All jobs in a server's queue are
handled in parallel, up to a capacity of 10 for each server; they finish with probability Ilf
at each timestep, where f is the product of the expected time for the job and the number
of jobs in the server's queue. The states for this POMDP are all combinations of waiting
jobs and server occupancies of the three job types, but the learner's observation is
restricted to the type of the waiting job. The state transition is obtained by removing all
jobs which have finished and adding the waiting job to the chosen server if it has space
available. The reward is + 1 if the job is successfully placed, or 0 if it is dropped.

The results are shown in Figure 4. A separate 106-step evaluation of the learned policy
obtained R7r = 0.95, corresponding to 95% success in placing jobs. In contrast, the
optimal deterministic policy, which assigns each job to the server optimized for it,
attained only 87% success. Thus the learned policy more than halves the drop rate!

6 CONCLUSION

Our online version of an algorithm proposed by Jaakkola, Singh and Jordan efficiently
learns a stochastic memoryless policy which is either provably optimal or at least
superior to any deterministic memoryless policy for each of four test problems. Many
enhancements are possible, including appropriate learning schedules to improve
performance and ensure convergence, estimation of the time between observation-action
visits to obtain better discount rates r and thereby enhance Q7r-estimate bias and variance
reduction (see [2]), and multiple starts or simulated annealing to avoid local minima. In
addition, observations could be extended to include some past history when appropriate.

Most POMDP algorithms use memory and attempt to learn an optimal deterministic
policy based on belief states. The stochastic memoryless policies learned by the JSJ
algorithm may not always be as good, but they are simpler to act upon and can adapt
smoothly in non-stationary environments. Moreover, because it searches the space of
stochastic policies, the JS] algorithm has the potential to find the optimal memoryless
policy. These considerations, along with the success of our simple implementation,
suggest that this algorithm may be a viable candidate for solving real-world POMDPs,
including distributed control or network admission and routing problems in which the
numbers of states are enormous and complete state information may be difficult to obtain
or estimate in a timely manner.

An AlgOrithm which Learns Stochastic Memoryless Policiesjor POMDPs 1079

(a)

Job
arrival
of type
1,2,or 3

Server A
TA = (2.6,3.9,3.9)

Server B
TB = (3.9,2.6,3.9)

Server C
Tc = (3.9,3.9,2.6)

(b)

095 .

I 09
I

a:

o.8o'----=20~00::-:0-----,-:4oo~00=---60~00-=-0 --::8~00'":c00::------:-=-::'1 00000
number of iterations

(c) [0.73
n(alm) = 0.02

0.25

0.02
0.96
0.02

0.02]
0.09
0.89

Figure 4: (a) Schematic of the multi-server queue, (b) evolution of the R71-estimate, and
(c) the resulting learned policy (observations I, 2, 3 across columns, actions A, B, C
down rows) for €= 0.005, a= 0.9999.

Acknowledgements

We would like to thank Mike Mozer and Tim Brown for helpful discussions.
Satinder Singh was funded by NSF grant IIS-9711753.

References

[1] Chrisman, L. (1992). Reinforcement learning with perceptual aliasing: The
perceptual distinctions approach. In Proceedings of the Tenth National
Conference on Artificial Intelligence.

[2] Jaakkola, T., Singh, S. P., and Jordan, M. I. (1995). Reinforcement learning
algorithm for partially observable Markov decision problems. In Advances in
Neural Information Processing Systems 7.

[3] Littman, M., Cassandra, A., and Kaelbling, L. (1995). Learning poliCies for
partially observable environments: Scaling up. In Proceedings of the Twelfth
International Conference on Machine Learning.

[4] Littman, M. L. (1994). Memoryless policies: Theoretical limitations and practical
results. Proceedings of the Third International Conference on Simulation of
Adaptive Behavior: From Animals to Animats.

[5] Loch, J., and Singh, S. P. (1998). Using eligibility traces to find the best
memoryless policy in partially observable Markov decision processes. In Machine
Learning: Proceedings of the Fifteenth International Conference.

[6] Lovejoy, W. S. (1991). A survey of algorithmic methods for partially observable
Markov decision processes. In Annals of Operations Research, 28.

[7] Morris, P. (1994). Introduction to Game Theory. Springer-Verlag, New York.

[8] Parr, R. and Russell, S. (1995). Approximating optimal poliCies for partially
observable stochastic domains. In Proceedings of the International Joint
Conference on Artificial Intelligence.

[9] Singh, S. P., Jaakkola, T., and Jordan, M. I. (1994). Learning without state
estimation in partially observable Markovian decision processes. In Machine
Learning: Proceedings of the Eleventh International Conference.

[10] Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction.
MIT Press.

