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Abstract

We present a stochastic clustering algorithm based on pairwise sim-
ilarity of datapoints. Our method extends existing deterministic
methods, including agglomerative algorithms, min-cut graph algo-
rithms, and connected components. Thus it provides a common
framework for all these methods. Our graph-based method differs
from existing stochastic methods which are based on analogy to
physical systems. The stochastic nature of our method makes it
more robust against noise, including accidental edges and small
spurious clusters. We demonstrate the superiority of our algorithm
using an example with 3 spiraling bands and a lot of noise.

1 Introduction

Clustering algorithms can be divided into two categories: those that require a vec-
torial representation of the data, and those which use only pairwise representation.
In the former case, every data item must be represented as a vector in a real normed
space, while in the second case only pairwise relations of similarity or dissimilar-
ity are used. The pairwise information can be represented by a weighted graph
G(V, E): the nodes V represent data items, and the positive weight w;; of an edge
(7,7) representing the amount of similarity or dissimilarity between items ¢ and j.
The graph G might not be a complete graph. In the rest of this paper w;; represents
a similarity value.

A vectorial representation is very convenient when one has either an explicit or
an implicit parametric model for the data. An implicit model means that the
data distribution function is not known, but it is assumed, e.g., that every cluster
is symmetrically distributed around some center. An explicit model specifically
describes the shape of the distribution (e.g., Gaussian). In these cases, if a vectorial
representation is available, the clustering procedure may rely on iterative estimation
of means (e.g., [2, 8]).

In the absence of a vectorial representation, one can either try to embed the graph
of distances in a vector space, or use a direct pairwise clustering method. The
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embedding problem is difficult, since it is desirable to use a representation that is
both low dimensional and has a low distortion of distances [6, 7, 3]. Moreover, even
if such embedding is achieved, it can help to cluster the data only if at least an
implicit parametric model is valid. Hence, direct methods for pairwise clustering
are of great value.

One strategy of pairwise clustering is to use a similarity threshold 8, remove edges
with weight less than #, and identify the connected components that remain as
clusters. A transformation of weights may precede the thresholding!. The physically
motivated transformation in [1] uses a granular magnet model and replaces weights
by “spin correlations”. Our algorithm is similar to this model, see Section 2.4.

A second pairwise clustering strategy is used by agglomerative algorithms [2], which
start with the trivial partition of N points into N clusters of size one, and continue
by subsequently merging pairs of clusters. At every step the two clusters which
are most similar are merged together, until the similarity of the closest clusters is
lower than some threshold. Different similarity measures between clusters distin-
guish between different agglomerative algorithms. In particular, the single linkage
algorithm defines the similarity between clusters as the maximal similarity between
two of their members, and the complete linkage algorithm uses the minimal value.

A third strategy of pairwise clustering uses the notion of cuts in a graph. A cut
(A, B) in a graph G(V, E) is a partition of V' into two disjoint sets A and B. The
capacity of the cut is the sum of weights of all edges that cross the cut, namely:
é(A, B):= EiEA,jEB w;j. Among all the cuts that separate two marked vertices,
the minimal cut is the one which has minimal capacity. The minimal cut clustering
algorithm [11] divides the graph into components using a cascade of minimal cuts?.

The normalized cut algorithm [9] uses the association of A (sum of weights incident
on A) and the association of B to normalize the capacity ¢(A, B). In contrast with
the easy min-cut problem, the problem of finding a minimal normalized cut (Ncut)
is NP-hard, but with certain approximations it reduces to a generalized eigenvalue
problem [9].

Other pairwise clustering methods include techniques of non parametric density es-
timation [4] and pairwise deterministic annealing [3]. However, the three categories
of methods above are of special importance to us, since our current work provides a
common framework for all of them. Specifically, our new algorithm may be viewed
as a randomized version of an agglomerative clustering procedure, and in the same
time it generalizes the minimal cut algorithm. It is also strongly related to the
physically motivated granular magnet model algorithm. By showing the connection
between these methods, which may seem very different at a first glance, we provide
a better understanding of pairwise clustering.

Our method is unique in its stochastic nature while provenly maintaining low com-
plexity. Thus our method performs as well as the aforementioned methods in “easy”
cases, while keeping the good performance in “difficult” cases. In particular, it is
more robust against noise and pathological configurations: (i) A minimal cut algo-
rithm is intuitively reasonable since it optimizes so that as much of the similarity

'For example, the mutual neighborhood clustering algorithm [10] substitutes the edge
weight w,;, with a new weight w,, = m +n where i is the m'™ nearest neighbor of j and j
is the n** nearest neighbor of 1.

2The reader who is familiar with flow theory may notice that this algorithm also belongs
to the first category of methods, as it is equivalent to a weight transformation followed by
thresholding. The weight transformation replaces w;, by the maximal flow between : and
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weight remains within the parts of the clusters, and as little as possible is “wasted”
between the clusters. However, it tends to fail when there is no clean separation
into 2 parts, or when there are many small spurious parts due, e.g., to noise. Our
stochastic approach avoids these problems and behaves more robustly. (i1) The
single linkage algorithm deals well with chained data, where items in a cluster are
connected by transitive relations. Unfortunately the deterministic construction of
chains can be harmful in the presence of noise, where a few points can make a
“bridge” between two large clusters and merge them together. Our algorithm in-
herits the ability to cluster chained data; at the same time it is robust against such
noisy bridges as long as the probability to select all the edges in the bridge remains
small.

2 Stochastic pairwise clustering

Our randomized clustering algorithm is constructed of two main steps:

1. Stochastic partition of the similarity graph into r parts (by randomized
agglomeration). For each partition index r (r=N...1):

(a) for every pair of points, the probability that they remain in the same
part is computed;

(b) the weight of the edge between the two points is replaced by this prob-
ability;

(c) clusters are formed using connected components and threshold of 0.5.

This is described in Sections 2.1 and 2.2.

2. Selection of proper r values, which reflect “interesting” structure in our
problem. This is described in Section 2.3.

2.1 The similarity transformation

At each level r, our algorithm performs a similarity transformation followed by
thresholding. In introducing this process, our starting point is a generalization of
the minimal cut algorithm; then we show how this generalization is obtained by the
randomization of a single linkage algorithm.

First, instead of considering only the minimal cuts, let us induce a probability
distribution on the set of all cuts. We assign to each cut a probability which
decreases with increasing capacity. Hence the minimal cut is the most probable cut
in the graph, but it does not determine the graph partition on its own.

As a second generalization to the min-cut algorithm we consider multi-way cuts.
An r-way cut is a partition of GG into r connected components. The capacity of an
r-way cut is the sum of weights of all edges that connect different components. In
the rest of this paper we may refer to r-way cuts simply as “cuts”.

Using the distribution induced on r-way cuts, we apply the following family of
weight transformations. The weight w;; is replaced by the probability that nodes ¢
and j are in the same side of a random r-way cut: w;; — p:-'J-. This transformation
is defined for every integer r between 1 and N.

Since the number of cuts in a graph is exponentially large, one must ask whether
pr; is computable. Here the decaying rate of the cut probability plays an essential
role. The induced probability is found to decay fast enough with the capacity, hence
p;; is dominated by the low capacity cuts. Thus, since there exists a polynomial
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bound on the number of low capacity cuts in any graph [5], the problem becomes
computable.

This strong property suggests a sampling scheme to estimate the pairing probabil-
ities. Assume that a sampling tool is available, which generates cuts according to
their probability. Under this condition, a sample of polynomial size is sufficient to
estimate the pf;’s.

The sampling tool that we use is called the “contraction algorithm” [5]. Its discovery
led to an efficient probabilistic algorithm for the minimal cut problem. It was shown
that for a given r, the probability that the contraction algorithm returns the minimal
r-way cut of any graph is at least N =2("=1) and it decays with increasing capacity®.
For a graph which is really made of clusters this is a rough underestimation.

The contraction algorithm can be implemented in several ways. We describe here
its simplest form, which is constructed from N-1 edge contraction steps. Each edge
contraction follows the procedure below:

o Select edge (7,j) with probability proportional to wj;.
e Replace nodes 7 and j by a single node {ij}.

e Let the set of edges incident on {ij} be the union of the sets of edges incident
on ¢ and j, but remove self loops formed by edges originally connecting i
to J.

It is shown in [5] that each step of edge contraction can be implemented in O(N)
time, hence this simple form of the contraction algorithm has complexity of O(N?).
For sparse graphs an O(N log N) implementation can be shown.

The contraction algorithm as described above is a randomized version of the ag-
glomerative single linkage procedure. If the probabilistic selection rule is replaced
by a greedy selection of the maximal weight edge, the single linkage algorithm is
obtained.

In terms of similarity transformations, a single linkage algorithm which halts with
r clusters may be associated with the transformation w;;—0,1 (1 if ¢ and j are
returned at the same cluster, 0 otherwise). Our similarity transformation (p};)
uses the expected value (or the average) of of this binary assignment under the
probabilistic relaxation of the selection rule.

We could estimate pj; by repeating the contraction algorithm M times and averaging
these binary indicators (a better way is described below;. Using Chernoff inequality
it can be shown? that if M > (2In2+41n N — 2Ind)/e* then each pf; is estimated,
with probability >1 — 4, within € from its true value.

2.2 Construction of partitions

To compute a partition at every r level, it is sufficient to know for every i-j pair
which r satisfies p}; = 0.5.

This is found by repeating the contraction algorithm M times. In each iteration
there exists a single r at which the edge between points 7 — j is marked and the
points are merged. Denote by rp, the level r which joins 7 and j at the m-th iteration
(m=1...M). The median r’ of the sequence {ry,ry...rp} is the sample estimate

®The exact decay rate is not known, but found experimentally to be adequate. Other-
wise we would ignore cuts generated with high capacity.
*Thanks to Ido Bergman for pointing this out.












