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Abstract 

We present a stochastic clustering algorithm based on pairwise sim
ilarity of datapoints. Our method extends existing deterministic 
methods, including agglomerative algorithms, min-cut graph algo
rithms, and connected components. Thus it provides a common 
framework for all these methods. Our graph-based method differs 
from existing stochastic methods which are based on analogy to 
physical systems. The stochastic nature of our method makes it 
more robust against noise, including accidental edges and small 
spurious clusters. We demonstrate the superiority of our algorithm 
using an example with 3 spiraling bands and a lot of noise. 

1 Introduction 

Clustering algorithms can be divided into two categories: those that require a vec
torial representation of the data, and those which use only pairwise representation. 
In the former case, every data item must be represented as a vector in a real normed 
space, while in the second case only pairwise relations of similarity or dissimilar
ity are used. The pairwise information can be represented by a weighted graph 
G(V, E): the nodes V represent data items, and the positive weight Wij of an edge 
(i, j) representing the amount of similarity or dissimilarity between items i and j. 
The graph G might not be a complete graph. In the rest of this paper Wij represents 
a similarity value. 

A vectorial representation is very convenient when one has either an explicit or 
an implicit parametric model for the data. An implicit model means that the 
data distribution function is not known, but it is assumed, e.g., that every cluster 
is symmetrically distributed around some center. An explicit model specifically 
describes the shape of the distribution (e.g., Gaussian). In these cases, if a vectorial 
representation is available, the clustering procedure may rely on iterative estimation 
of means (e.g., [2, 8]). 

In the absence of a vectorial representation, one can either try to embed the graph 
of distances in a vector space, or use a direct pairwise clustering method. The 
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embedding problem is difficult, since it is desirable to use a representation that is 
both low dimensional and has a low distortion of distances [6, 7, 3]. Moreover, even 
if such embedding is achieved, it can help to cluster the data only if at least an 
implicit parametric model is valid. Hence, direct methods for pairwise clustering 
are of great value. 

One strategy of pairwise clustering is to use a similarity threshold (), remove edges 
with weight less than (), and identify the connected components that remain as 
clusters. A transformation of weights may precede the thresholding!. The physically 
motivated transformation in [1] uses a granular magnet model and replaces weights 
by "spin correlations". Our algorithm is similar to this model, see Section 2.4. 

A second pairwise clustering strategy is used by agglomerative algorithms [2], which 
start with the trivial partition of N points into N clusters of size one, and continue 
by subsequently merging pairs of clusters. At every step the two clusters which 
are most similar are merged together, until the similarity of the closest clusters is 
lower than some threshold. Different similarity measures between clusters distin
guish between different agglomerative algorithms. In particular, the single linkage 
algorithm defines the similarity between clusters as the maximal similarity between 
two of their members , and the complete linkage algorithm uses the minimal value. 

A third strategy of pairwise clustering uses the notion of cuts in a graph. A cut 
(A, B) in a graph G(V, E) is a partition of V into two disjoint sets A and B. The 
capacity of the cut is the sum of weights of all edges that cross the cut, namely: 
c(A, B) = 2:iEA,jEB Wij. Among all the cuts that separate two marked vertices, 
the minimal cut is the one which has minimal capacity. The minimal cut clustering 
algorithm [11] divides the graph into components using a cascade of minimal cuts2 . 

The normalized cut algorithm [9] uses the association of A (sum of weights incident 
on A) and the association of B to normalize the capacity c(A, B). In contrast with 
the easy min-cut problem, the problem of finding a minimal normalized cut (Ncut) 
is NP-hard, but with certain approximations it reduces to a generalized eigenvalue 
problem [9]. 

Other pairwise clustering methods include techniques of non parametric density es
timation [4] and pairwise deterministic annealing [3]. However, the three categories 
of methods above are of special importance to us, since our current work provides a 
common framework for all of them. Specifically, our new algorithm may be viewed 
as a randomized version of an agglomerative clustering procedure, and in the same 
time it generalizes the minimal cut algorithm. It is also strongly related to the 
physically motivated granular magnet model algorithm. By showing the connection 
between these methods, which may seem very different at a first glance, we provide 
a better understanding of pairwise clustering. 

Our method is unique in its stochastic nature while provenly maintaining low com
plexity. Thus our method performs as well as the aforementioned methods in "easy" 
cases, while keeping the good performance in "difficult" ,cases. In particular, it is 
more robust against noise and pathological configurations: (i) A minimal cut algo
rithm is intuitively reasonable since it optimizes so that as much of the similarity 

1 For example, the mutual' neighborhood clustering algorithm [10] substitutes the edge 
weight W,} with a new weight w:} = m + n where i is the m th nearest neighbor of j and j 
is the nth nearest neighbor of i. 

2The reader who is familiar with flow theory may notice that this algorithm also belongs 
to the first category of methods, as it is equivalent to a weight transformation followed by 
thresholding. The weight transformation replaces Wi} by the maximal flow between i and 
J. 
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weight remains within the parts of the clusters, and as little as possible is "wasted" 
between the clusters. However, it tends to fail when there is no clean separation 
into 2 parts, or when there are many small spurious parts due, e.g., to noise. Our 
stochastic approach avoids these problems and behaves more robustly. (ii) The 
single linkage algorithm deals well with chained data, where items in a cluster are 
connected by transitive relations. Unfortunately the deterministic construction of 
chains can be harmful in the presence of noise, where a few points can make a 
"bridge" between two large clusters and merge them together. Our algorithm in
herits the ability to cluster chained data; at the same time it is robust against such 
noisy bridges as long as the probability to select all the edges in the bridge remains 
small. 

2 Stochastic pairwise clustering 

Our randomized clustering algorithm is constructed of two main steps: 

1. Stochastic partition of the similarity graph into r parts (by randomized 
agglomeration). For each partition index r (r = N ... 1): 

(a) for every pair of points, the probability that they remain in the same 
part is computed; 

(b) the weight of the edge between the two points is replaced by this prob
ability; 

(c) clusters are formed using connected components and threshold of 0.5. 

This is described in Sections 2.1 and 2.2. 

2. Selection of proper r values, which reflect "interesting" structure m our 
problem. This is described in Section 2.3. 

2.1 The similarity transformation 

At each level r, our algorithm performs a similarity transformation followed by 
thresholding. In introducing this process, our starting point is a generalization of 
the minimal cut algorithm; then we show how this generalization is obtained by the 
randomization of a single linkage algorithm. 

First, instead of considering only the minimal cuts, let us induce a probability 
distribution on the set of all cuts. We assign to each cut a probability which 
decreases with increasing capacity. Hence the minimal cut is the most probable cut 
in the graph, but it does not determine the graph partition on its own. 

As a second generalization to the min-cut algorithm we consider multi-way cuts. 
An r-way cut is a partition of G into r connected components. The capacity of an 
r-way cut is the sum of weights of all edges that connect different components. In 
the rest of this paper we may refer to r-way cuts simply as "cuts". 

Using the distribution induced on r-way cuts, we apply the following family of 
weight transformations. The weight Wij is replaced by the probability that nodes i 
and j are in the same side of a random r-way cut: Wij -+ pij' This transformation 
is defined for every integer r between 1 and N. 

Since the number of cuts in a graph is exponentially large, one must ask whether 
pi· is computable. Here the decaying rate of the cut probability plays an essential 
r01e. The induced probability is found to decay fast enough with the capacity, hence 
pij is dominated by the low capacity cuts. Thus, since there exists a polynomial 



A Randomized Algorithm/or Pairwise Clustering 427 

bound on the number of low capacity cuts in any graph [5], the problem becomes 
computable. 

This strong property suggests a sampling scheme to estimate the pairing probabil
ities. Assume that a sampling tool is available, which generates cuts according to 
their probability. Under this condition, a sample of polynomial size is sufficient to 
estimate the P'ij's. 

The sampling tool that we use is called the "contraction algorithm" [5]. Its discovery 
led to an efficient probabilistic algorithm for the minimal cut problem. It was shown 
that for a given r, the probability that the contraction algorithm returns the minimal 
r-way cut of any graph is at least N-2(r-l), and it decays with increasing capacity3. 

For a graph which is really made of clusters this is a rough underestimation. 

The contraction algorithm can be implemented in several ways. We describe here 
its simplest form, which is constructed from N-l edge contraction steps. Each edge 
contraction follows the procedure below: 

• Select edge (i, j) with probability proportional to Wij. 

• Replace nodes i and j by a single node {ij}. 

• Let the set of edges incident on {ij} be the union of the sets of edges incident 
on i and j, but remove self loops formed by edges originally connecting i 
to j. 

It is shown in [5] that each step of edge contraction can be implemented in O(N) 
time, hence this simple form of the contraction algorithm has complexity of O(N2). 
For sparse graphs an O(N log N) implementation can be shown. 

The contraction algorithm as described above is a randomized version of the ag
glomerative single linkage procedure. If the probabilistic selection rule is replaced 
by a greedy selection of the maximal weight edge, the single linkage algorithm is 
obtained. 

In terms of similarity transformations, a single linkage algorithm which halts with 
r clusters may be associated with the transformation Wij~O,1 (1 if i and j are 
returned at the same cluster, 0 otherwise). Our similarity transformation (P'ij) 
uses the expected value (or the average) of of this binary assignment under the 
probabilistic relaxation of the selection rule. 

We could estimate pij by repeating the contraction algorithm M times and averaging 
these binary indicators (a better way is described belowJ. Using Chernoff inequality 
it can be shown4 that if M 2: (21n 2 + 4ln N - 2ln Il) / t then each P'ij is estimated, 
with probability 2:1 - Il, within t from its true value. 

2.2 Construction of partitions 

To compute a partition at every r level, it is sufficient to know for every i-j pair 
which r satisfies P'ij = 0.5. 

This is found by repeating the contraction algorithm M times. In each iteration 
there exists a single r at which the edge between points i - j is marked and the 
points are merged. Denote by rm the level r which joins i and j at the m-th iteration 
(m = 1 ... M). The median r' of the sequence {rl' r2 ... r M } is the sample estimate 

3The exact decay rate is not known, but found experimentally to be adequate. Other
wise we would ignore cuts generated with high capacity. 

4Thanks to Ido Bergman for pointing this out. 
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for the level r that satisfies pij = 0.5. We use an on-line technique (not described 
here) to estimate the median r' using constant and small memory. 

Having computed the matrix r', where the entry r;j is the estimator for r that 
satisfies pij = 0.5, we find the connected components at a given r value after 
disconnecting every edge (i,j) for which r~j > r. This gives the r level partition. 

2.3 Hierarchical clustering 

We now address the problem of choosing "good" r values. 

The transformed weight pij has the advantage of reflecting transitive relations be
tween data items i and j. For a selected value of r (which defines a specification 
level) the partition of data items into clusters is obtained by eliminating edges whose 
weight (pij) is less than a fixed threshold (0.5). That is: nodes are assigned to the 
same cluster if at level r their probability to be on the same side of a random r-way 
cut is larger than half. 

Partitions which correspond to subsequent r values might be very similar to each 
other, or even identical, in the sense that only a few nodes (if at all) change the 
component to which they belong. Events which are of interest, therefore, are when 
the variation between subsequent partitions is of the order of the size of a clus
ter . This typically happens when two clusters combine to form one cluster which 
corresponds to a higher scale (less resolution). 

In accordance, using the hierarchical partition obtained in Section 2.2, we measure 
the variation between subsequent partitions by L~=l ~Nk , where J{ is a small 
constant (of the order of the number of clusters) and Nk is the size of the kth 

largest component of the partition. 

2.4 The granular magnet model 

Our algorithm is closely related to the successful granular magnet model recently 
proposed in [1]. However, the two methods draw the random cuts effectively from 
different distributions. In our case the distribution is data driven, imposed by the 
contraction algorithm . The physical model imposes the Boltzmann distribution, 
where a cut of capacity E is assigned a probability proportional to exp(-E/T) , 
and T is a temperature parameter. 

The probability P& measures whether nodes i and j are on the same side of a cut 
at temperature T (originally called "spin-spin correlation function" ). The magnetic 
model uses the similarity transformation Wij --+ P& and a threshold (0 .5) to break 
the graph into components. However, even if identical distributions were used, P& 
is inherently different from pij since at a fixed temperature the random cuts may 
have different numbers of components . 

Superficially, the parameter T plays in the magnetic model a similar role to our pa
rameter r. But the two parameterizations are quite different . First, r is a discrete 
parameter while T is a continuous one. Moreover, in order to find the pairing prob
abilities P'fJ.. for different temperatures, the stochastic process should be employed 
for every '1 ' value separately. On the other hand , our algorithm estimates pij for 
every 1 ::; r ::; N at once. For hard clustering (v.s. soft clustering) it was shown 
above that even this is not necessary, since we can get a direct estimation of r which 
satisfies pij = 0.5 . 
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3 Example 

Pairwise clustering has the advantage that a vectorial representation of the data 
is not needed. However , graphs of distances are hard to visualize and we there
fore demonstrate our algorithm using vectorial data. In spite of having vectorial 
representation, the information which is made available to the clustering algorithm 
includes only the matrix of pairwise Euclidean distances5 dij . Since our algorithm 
works with similarity values and not with distances, it is necessary to invert the 
distances using Wij = f(dij ). We choose f to be similar to the function used in [1]: 
Wij = exp( -drj / a2 ) where a is the average distance to the n-th nearest neighbor 
(we used n=10, but the results remain the same as long as a reasonable value is 
selected). 

bl'---____ -.J 

Figure 1: The 2000 data points (left), and the three most pronounced hierarchical levels 
of clustering (right). At r=353 the three spirals form one cluster (figure a) . This cluster 
splits at r=354 into two (figures b1,b2), and into three parts at r=368 (figures c1,c2,c3) . 
The background points form isolated clusters, usualy of size 1 (not shown). 

Figure 1 shows 2000 data points in the Euclidean plane. In the stochastic stage of 
the algorithm we used only 200 iterations of graph contraction, during which we 
estimated for every pair i-j the value of r which satisfies pij = 0.5 (see Section 2.2). 

As expected, subsequent partitions are typically identical or differ only slightly from 
each other (Figure 2). The variation between subsequent partitions was measured 
using the 10 largest parts (I{ = 10, see Section 2.3). The results did not depend on 
the exact value of J{ since the sum was dominated by its first terms. 

At low r values (partition into a small number of components) a typical partition is 
composed of one giant component and a few tiny components that capture isolated 
noise points. The incorporation of these tiny components into the giant one pro
duce negligible variations between subsequent partitions. At high r values all the 
components are small , and therefore the variation between subsequent partitions 
must decay. At intermediate r values a small number of sharp peaks appear. 

The two highest peaks in Figure 2 are at r=354 and r=368; they mark meaningful 
hierarchies for the data clustering, as shown in Figure 1. We compare our results 
with two other methods in Figures 3 and 4. 

5The vectorial representation of data points is not useful even if it was available, since 
the parametric model is not known (see Section 1) 
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Figure 2: The variation between subse
quent partitions (see text) as a function of 
the number of components (r). The vari
ation is computed for every integer r (the 
spacing between peaks is not due to sparse 
sampling). Outside the displayed range the 
variation vanishes. 

Figure 4: A three (macro
scopic) clusters partition by 
a deterministic single linkage 
algorithm. The probabilistic 
scheme avoids the "bridging 
effect" thanks to the small 
probability of selecting the 
particular chain of edges. 
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