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Abstract 

We employ both master equation and order parameter approaches 
to analyze the asymptotic dynamics of on-line learning with dif
ferent learning rate annealing schedules. We examine the relations 
between the results obtained by the two approaches and obtain new 
results on the optimal decay coefficients and their dependence on 
the number of hidden nodes in a two layer architecture. 

1 Introduction 

The asymptotic dynamics of stochastic on-line learning and it's dependence on the 
annealing schedule adopted for the learning coefficients have been studied for some 
time in the stochastic approximation literature [1, 2] and more recently in the neural 
network literature [3, 4, 5]. The latter studies are based on examining the Kramers
Moyal expansion of the master equation for the weight space probability densities. 
A different approach, based on the deterministic dynamics of macroscopic quantities 
called order parameters, has been recently presented [6, 7]. This approach enables 
one to monitor the evolution of the order parameters and the system performance 
at all times. 

In this paper we examine the relation between the two approaches and contrast the 
results obtained for different learning rate annealing schedules in the asymptotic 
regime. We employ the order parameter approach to examine the dependence of 
the dynamics on the number of hidden nodes in a multilayer system. In addition, 
we report some lesser-known results on non-standard annealing schedules 
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2 Master Equation 

Most on-line learning algorithms assume the form Wt+l = Wt + 1]o/tP H(wt,xt) 
where Wt is the weight at time t, Xt is the training example, and H(w,x) is the 
weight update. The description of the algorithm's dynamics in terms of weight 
space probability densities starts from the master equation 

P(w',t+1)= JdW (8(w'-w-~~H(w,x)))xP(w,t) (1) 

where ( .. '}x indicates averaging with respect to the measure on x, P(w,t) is the 
probability density on weights at time t, and 8( ... ) is the Dirac function. One may 
use the Kramers-Moyal expansion of Eq.(l) to derive a partial differential equation 
for the weight probability density (here in one dimension for simplicity) {3, 4] 

at P ( w, t) = t (~~) i (7~ r a~ [ (Hi ( w, x) > x P ( w, t)] . (2) 
t=l 

Following {3], we make a small noise expansion for (2) by decomposing the weight 
trajectory into a deterministic and stochastic pieces 

or (TJo)-"( 
~ = tP (w-</>(t)) (3) 

where </>( t) is the deterministic trajectory, and ~ are the fluctuations. Apart from 
the factor (1]0/ tP)'Y that scales the fluctuations, this is identical to the formulation 
for constant learning in {3]. The proper value for the unspecified exponent, will 
emerge from homogeneity requirements. Next, the dependence of the jump moments 
(Hi (w, x) > on 1]0 is explicated by a Taylor series expansion about the deterministic 
path </>. T!{e coefficients in this series expansion are denoted 

a~i) == ai (Hi(w,x))x /awilw=tI> 

Finally one rewrites (2) in terms of </> and ~ and the expansion of the jump moments, 
taking care to transform the differential operators in accordance with (3). 

These transformations leave equations of motion for </> and the density I1(~, t) on 
the fluctuations 

d</> 
dt = 

= 

(4) 

For stochastic descent H ( w, x) = -V w E( w, x) and (4) describes the evolution of 
</> as descent on the average cost. The fluctuation equation (5) requires further 
manipulation whose form depends on the context. For the usual case of descent 
in a quadratic minimum (ail) = -G, minus the cost function curvature), we take 
''i = 1/2 to insure that for any m, terms in the sum are homogeneous in T}o/tP 

For constant learning rate (p = 0), rescaling time as t ~ 1]ot allows (5) to be written 
in a form convenient for perturbative analysis in 1]0 Typically, the limit 1]0 ~ 0 is 
invoked and only the lowest order terms in 1]0 retained (e.g. [3]). These comprise 
a diffusion operator, which results in a Gaussian approximation for equilibrium 
densities. Higher order terms have been successfully used to calculate corrections 
to the equilibrium moments in powers of 1]0 [8]. 
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Of primary interest here is the case of annealed learning, as required for convergence 
of the parameter estimates. Again assuming a quadratic bowl and 'Y = 1/2, the first 
few terms of (5) are 

Gt II = - :t Gd~II) - all) i; Ge(~II) + ~a~O): Gl II + 0 (: r/2. (6) 

As t -+ 00 the right hand side of (6) is dominated by the first three terms (since 
o < p S 1). Precisely which terms dominate depends on p. . 

We will first review the classical case p = 1. Asymptotically 1> -+ w"', a local 
optimum. The first three leading terms on the right hand side of (6) are all of order 
lit. For t -+ 00, we discard the remaining terms. From the resulting equation we 
recover a Gaussian equilibrium distribution for ~, or equivalently for Vt ( w - w"') == 
Vtv where v is called the weight error. The asymptotically normal distribution for 
Vtv has variance 0'0v from which the asymptotic expected squared weight error 
can be derived 

1 2 (0) 
1· E[I 12] 2 7Jo a 2 1 1m v -0' --

t->oo -,;tv t - 27]0 G'" - 1 t (7) 

where G'" == G(w"') is the curvature at the local optimum. 

Positive O',;t v requires T]o > 11 (2G"'). If this condition is not met the expected 
squared weight offset converges as (1It)1-2'1oG', slower than lit [5, for example, 
and references therein]. The above confirms the classical results [1] on asymptotic 
normality and convergence rate for 1 I t annealing. 

For the case 0 < p < 1, the second and third terms on the right hand side of (6) 
will dominate as t -+ 00. Again, we have a Gaussian equilibrium density for ~. 
Consequently ViP v is asymptotically normal with variance O'~v leading to the 
expected squared weight error 

2 1 
0' r;-;; -

ytPv tP 
= T]o a~O) .!.. 

2G tP 
(8) 

Notice that the convergence is slower than lit and that there is no critical value of 
the learning rate to obtain a sensible equilibrium distribution. (See [9] for earlier 
results on 11tP annealing.) 

The generalization error follows the same decay rate as the expected weight offset. 
In one dimension, the expected squared weight offset is directly related to excess 
generalization error (the generalization error minus the least generalization error 
achievable) Eg = G E[v2 ]. In multiple dimensions, the expected squared weight 
offset, together with the maximum and minimum eigenvalues of G'" provide upper 
and lower bounds on the excess generalization error proportional to E[lvI2 ], with 
the criticality condition on G'" (for p = 1 )replaced with an analogous condition on 
its eigenvalues. 

3 Order parameters 

In the Master equation approach, one focuses attention on the weight space distri
bution P( w, t) and calculates quantities of interested by averaging over this density. 
An alternative approach is to choose a smaller set of macroscopic variables that are 
sufficient for describing principal properties of the system such as the generaliza
tion error (in contrast to the evolution of the weights w which are microscopic). 
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Formally, one can replace the parameter dynamics presented in Eq.(1) by the cor
responding equation for macroscopic observables which can be easily derived from 
the corresponding expressions for w. By choosing an appropriate set of macroscopic 
variables and invoking the thermodynamic limit (i.e., looking at systems where the 
number of parameters is infinite), one obtains point distributions for the order pa
rameters, rendering the dynamics deterministic. 

Several researchers [6, 7] have employed this approach for calculating the tr~ing 
dynamics of a soft committee machine (SCM) . The SCM maps inputs x E RN to 
a scalar, through a model p{w,x) = 2:~lg{Wi' x). The activation function of 
the hidden units is g{u) == erf{u/V2) and Wi is the set of input-to-hidden adaptive 
weights for the i = 1 ... K hidden nodes. The hidden-to-output weights are set 
to 1. This architecture preserves most of the properties of the learning dynamics 
and the evolution of the generalization error as a general two-layer network, and 
the formalism can be easily extended to accommodate adaptive hidden-to-output 
weights [10]. 

Input vectors x are independently drawn with zero mean and unit variance, and the 
corresponding targets y are generated by deterministic teacher network corrupted 
by additive Gaussian output noise of zero mean and variance O'~. The teacher 
network is also a SCM, with input-to-hidden weights wi. The order parameters 
sufficient to close the dynamics, and to describe the network generalization error 
are overlaps between various input-to-hidden vectors Wi . Wk == Qik, Wi' W~ _ 

Rin, and w~· w~ == Tnm . 

Network performance is measured in terms of the generalization error Eg{W) _ 
(1/2 [ p(w, x) - Y ]2)~. The generalization error can be expressed in closed form in 
terms of the order parameters in the thermodynamiclimit (N -+ 00). The dynamics 
of the latter are also obtained in closed form [7]. These dynamics are coupled non
linear ordinary differential equations whose solution can only be obtained through 
numerical integration. However, the asymptotic behavior in the case of annealed 
learning is amenable to analysis, and this is one of the primary results of the paper. 

We assume an isotropic teacher Tnm = 8nm and use this symmetry to reduce the 
system to a vector of four order parameters uT = (r, q, s, c) related to the overlaps 
by Rin = 8in (1 + r) + (1- 8in)S and Qik = 8 ik(1 + q) + {1- 8ik )C. 

With learning rate annealing and limt-+oo u = ° we describe the dynamics in this 
vicinity by a linearization of the equations of motion in [7]. The linearization is 

d 2 2 
dt U = rJ1\d U + rJ 0' /I b , 

where O'~ is the noise variance, b T = ~ (0,1/,;3,0,1/2), rJ = rJo/tP, and M is 

2 
M = 3V31T 

-4 

4 
3 

--V3 
2 

3V3 

3 -~(K -lhI(3) 
4 3 

-(K - 1)V3 
3 2 2 

--(K-2)+-
2 J3 

3V3(K - 2) + ~ 

3 
-(K -1)V3 
~ 

--(K - 1)V3 
2 

o 

-3V3(K - 2) + ~ 
V3 

(9) 

(10) 

The asymptotic equations of motion (9) were derived by dropping terms of order 
O(rJlluI12) and higher, and terms of order O{rJ2 u). While the latter are linear in the 
order parameters, they are dominated by the rJu and rJ20'~b terms in (9) as t -+ 00. 
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This choice of truncations sheds light on the approach to equilibrium that is not 
implicit in the master equation approach. In the latter, the dominant terms for 
the asymptotics of (6) were identified by time scale of the coefficients, there was 
no identification of system observables that signal when the asymptotic regime 
is entered. For the order parameter approach, the conditions for validity of the 
asymptotic approximations are cast in terms of system observables 1JU vs rlu VS 

1J2 �f�I�~�.� 

The solution to (9) is 

u(t) = -yet, to) Uo + �f�I�~� j3(t, to) b 

where Uo == u(to) and 

-y(t, to) = exp {M lot dr 1J(r)} and j3(t, to) = t dr -yet, r) 1J2( r). 
lto 

(11) 

(12) 

The asymptotic order parameter dynamics allow us to compute the generalization 
error (to first order in u) 

K(l K-1 ) 
E/ = -:; J3(q-2r) + -2-(C-28) . (13) 

Using the solution of Eq.(l1), the generalization error consists of two pieces: a 
contribution depending on the actual initial conditions Uo and a contribution due 
to the second term on the r.h.s. of Eq.(l1), independent of Uo. The former decays 
more rapidly than the latter, and we ignore it in what follows. Asymptotically, 
the generalization error is of the form E/ = fI;(CI0l(t) + C202(t)), where Cj are K 
dependent coefficients, and OJ are eigenmodes that evolve as 

OJ = - 1J5 [! _ to'it)Ot;;-(O'it)O+I)] . (14) 
1 + (}:j1Jo t 

with eigenvalues (Fig. l(a)) 

(}:1 = �-�~� �(�~� -2) and (}:2 = �-�~� �(�~� +2(K -1)) (15) 

The critical learning rate �1�J�~�r�i�t�,� above which the generalization decays as lit is, for 
K> 2 - , 

crit (1 1 ) 7r 
110 = max - (}:1 ,- (}:2 = 41 J3 - 2 . (16) 

For 1Jo > �1�J�~�r�i�t� both modes OJ, i = 1,2 decay as lit, and so 

2 2 (Cl C2) 1 2 ( 1 
E/ = -fI 1I 11o 1 + (}:11JO + 1 + (}:21Jo t == fIll f 1Jo,K) t (17) 

Minimizing the prefactor f (1Jo, K) in (17) minimizes the asymptotic error. The 
values �1�J�~�P�t� (K) are shown in Fig. 1 (b), where the special case of K = 1 (see below) 
is also included: There is a significant difference between the values for K = 1 and 
K = 2 and a rather weak dependence on K for K �~� 2. The sensitivity of the 
generalization error decay factor on the choice of 1Jo is shown in Fig. 1 ( c). 

The influence of the noise strength on the generalization error can be seen directly 
from (17): the noise variance fI; is just a prefactor scaling the lit decay. Neither 
the value for the critical nor for the optimal1Jo is influenced by it. 






