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Abstract 

We derive the correspondence between regularization operators used in 
Regularization Networks and Hilbert Schmidt Kernels appearing in Sup
port Vector Machines. More specifica1ly, we prove that the Green's Func
tions associated with regularization operators are suitable Support Vector 
Kernels with equivalent regularization properties. As a by-product we 
show that a large number of Radial Basis Functions namely condition
ally positive definite functions may be used as Support Vector kernels. 

1 INTRODUCTION 

Support Vector (SV) Machines for pattern recognition, regression estimation and operator 
inversion exploit the idea of transforming into a high dimensional feature space where 
they perform a linear algorithm. Instead of evaluating this map explicitly, one uses Hilbert 
Schmidt Kernels k(x, y) which correspond to dot products of the mapped data in high 
dimensional space, i.e. 

k(x, y) = (<I>(x) · <I>(y)) (I) 

with <I> : .!Rn --* :F denoting the map into feature space. Mostly, this map and many of 
its properties are unknown. Even worse, so far no general rule was available. which kernel 
should be used, or why mapping into a very high dimensional space often provides good 
results, seemingly defying the curse of dimensionality. We will show that each kernel 
k(x, y) corresponds to a regularization operator P, the link being that k is the Green's 
function of P* P (with F* denoting the adjoint operator of F). For the sake of simplicity 
we shall only discuss the case of regression - our considerations, however, also hold true 
foi the other cases mentioned above. ~ 

We start by briefly reviewing the concept of SV Machines (section 2) and of Regularization 
Networks (section 3). Section 4 contains the main result stating the equivalence of both 
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methods. In section 5, we show some applications of this finding to known SV machines. 
Section 6 introduces a new class of possible SV kernels, and, finally, section 7 concludes 
the paper with a discussion. 

2 SUPPORT VECTOR MACHINES 

The SV algorithm for regression estimation, as described in [Vapnik, 1995] and [Vapnik 
et al., 1997], exploit~ the idea of computing a linear function in high dimensional feature 
space F (furnished with a dot product) and thereby computing a nonlinear function in the 
space of the input data !Rn. The functions take the form f(x) = (w · <ll(x)) + b with 
ell : !Rn -+ :F and w E F. 

In order to infer f from a training set {(xi, Yi) I i = 1, ... , f., Xi E !Rn, Yi E IR}, one tries 
to minimize the empirical risk functional Remp[f] together with a complexity term l!wll 2 , 

thereby enforcingflatness in feature space, i.e. to minimize 

1 l 

Rreg[/] = Remp[!] + Allwll 2 =f. :L;c(f(xi),yi) + Allwll 2 

i=l 

(2) 

with c(f(xi),yi) being the cost function determining how deviations of f(xi) from the 
target values Yi should be penalized, and A being a regularization constant. As shown in 
[Vapnik, 1995] for the case of €-insensitive cost functions, 

c(f(x) ) = { lf(x)- yl- € for lf(_x)- Yl ;::: e 
' Y 0 otherwtse ' (3) 

(2) can be minimized by solving a quadratic programming problem formulated in terms 
of dot products in :F. It turns out that the solution can be expressed in terms of Support 

Vectors, w = :Ef=I Cti<ll(xi), and therefore 

l l 

f(x) = L ai(<ll(xi) · <ll(x)) + b = L aik(xi, x) + b, (4) 
i=l i=l 

where k(xi, x) is a kernel function computing a dot product in feature space (a concept 
introduced by Aizerrnan et al. [ 1964]). The coefficients ai can be found by solving a 
quadratic programming problem (with Kii := k(xi, Xj) and ai = f3i - {3i): 

l l 

minimize ! L (f3i- f3i)(f3j- f3J)Kij- "£, (!3i- f3i)Yi- (f3i + f3i)e 
i,j=l i=l -

f. 
(5) 

subject to "£, f3i - !3i = 0, f3i, !3i E [0, ft] · 
i=l 

Note that (3) is not the only possible choice of cost functions resulting in a quadratic pro
gramming problem (in fact quadratic parts and infinities are admissible, too). For a detailed 
discussion see [Smola and Scholkopf, 1998]. Also note that any continuous symmetric 
function k(x, y) E L2 ® L2 may be used as an admissible Hilbert-Schmidt kernel if it 
satisfies Mercer's condition 

// k(x,y)g(x)g(y)dxdy;::: 0 for all g E L2 (IRn)~ (6) 

3 REGULARIZATION NETWORKS 

Here again we start with minimizing the empirical risk functional Remp[!] plus a regu

larization term liP /11 2 defined by a regularization operator Pin the sense of Arsenin and 
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Tikhonov [1977]. Similar to (2), we minimize 
l 

~ 2 1"' ~ 2 Rreg[f] = Remp + .\IIPJII = f £_-c(f(xi),yi) + -XIIPJII · 
i=1 

(7) 

Using an expansion off in terms of some symmetric function k(xi, Xj) (note here, that k 
need not fulfil Mercer's condition), 

f(x) = 2: aik(xi, x) + b, (8) 

and the cost function defined in (3 ), this leads to a quadratic programming problem similar 
to the one for SVs: by computing Wolfe's dual (for details of the calculations see [Smola 
and SchOlkopf, 1998]), and using 

Dij := ((Fk)(xi, .) · (Fk)(xj, .)) (9) 

((f · g) denotes the dot product of the functions f and g in Hilbert Space, t.e. 

I !(x)g(x)dx), we get a= n-1 K(i]- /3*), with f3i, f3i being the solution of 

l l 

mm1m1Ze ! 2: (f3i- f3i)(f3j- {3j)(KD- 1 K)ij- L (f3i- f3i)Yi- (f3i + f3i)E 
i,j=1 i=l 

f_ 

subject to L f3i - f3i = 0, f3i, f3i E [0, A] 
i=1 

(I 0) 
Unfortunately this setting of the problem does not preserve sparsity in terms of the coef
ficients, as a potentially sparse decomposition in terms of f3i and f3i is spoiled by n-1 K, 
which in general is not diagonal (the expansion (4) on the other hand does typically have 
many vanishing coefficients). 

4 THE EQUIVALENCE OF~BOTH METHODS 

Comparing (5) with (10) leads to the question if and under which condition the two methods 
might be equivalent and therefore also under which conditions regularization networks 
might lead to sparse decompositions (i.e. only a few of the expansion coefficients in f 
would differ from zero). A sufficient condition is D = K (thus K n-1 K = K), i.e. 

(11) 

Our goal now is twofold: 

• Given a regularization operator P, find a kernel k such that a SV machine using k 
will not only enforce flatness in feature space, but also correspond to minimizing 
a regularized risk functional with P as regularization operator. 

• Given a Hilbert Schmidt kernel k, find a regularization operator P such that a SV 
machine using this kernel can be viewed as a Regularization Network using P. 

These two problems can be solved by employing the concept of Green's functions as de
scribed in [Girosi et al., 1993]. These functions had been introduced in the context of 
solving differential equations. For our purpose, it is sufficient to know that the Green's 

functions Gx, (x) ofF* P satisfy 

(12) 

Here, 8xi (x) is the 8-distribution (not to be confused with the Kronecker symbol8ij) which 
has the property that (f · 8x.) = f(xi). Moreover we require for all Xi the projection of 
Gx, (x) onto the null space of F* P to be zero. The relationship between kernels and 
regularization operators is formalized in the following proposition. 



346 A. I. Smola and B. Schtilkopf 

Proposition 1 
Let P be a regularization operator, and G be the Green's function of P* P. Then G is a 
Hilbert Schmidt-Kernel such that D = K. SV machines using G minimize risk functional 
(7) with Pas regularization operator. 

Proof: Substituting ( 12) into GxJ (xi) = ( GxJ (.) · 8x• (.)) yields 

Gxi (xi) = ( (PGx, ){.) · (PGxJ(.)) = Gx; {xj), (13) 

hence G(xi,Xj) := Gx,{xj) is symmetric and satisfies (11). Thus the SVoptimization 
problem (5) is equivalent to the regularization network counterpart ( 10). Furthermore G is 
an admissible positive kernel, as it can be written as a dot product in Hilbert Space, namely 

(14) 

In the following we will exploit this relationship in both ways: to compute Green's func
tions for a given regularization operator P and to infer the regularization operator from a 
given kernel k. 

5 TRANSLATION INVARIANT KERNELS 

Let us now more specifically consider regularization operators P that may be written as 
multiplications in Fourier space [Girosi et al., 1993] 

(Pi· P ) = 1 f f{w)fJ(w) dw 
g (21l')n/2 Jn P(w) 

(15) 

with ](w) denoting the Fourier transform of j(x), and P(w) = P( -w) real valued, non
negative and converging uniformly to 0 for lwl --+ oo and n = supp[P(w)]. Small values 
of P(w) correspond to a strong attenuation of the corresponding frequencies. 

For regularization operators defined in Fourier Space by (15) it can be shown by exploiting 
P(w) = P(-w) = P(w) that 

G(Xi x) = 1 f eiw(x;-x) P(w)dw 
l {27!' )n/2 }JR.n (16) 

is a corresponding Green's function satisfying translational invariance, i.e. G(xi,xj) = 
G (Xi - xi), and G ( w) = P ( w). For the proof, one only has to show that G satisfies (11 ). 

This provides us with an efficient tool for analyzing SV kernels and the types of capacity 
control they exhibit 

Example 1 (Bq-splines) 
Vapnik et al. [ 1997] propose to use Bq-splines as building blocks for kernels, i.e. 

(17) 
i=l 

with x E !Rn. For the sake of simplicity, we consider the case n 1. Recalling the 
definition 

. Bq = ®q+11[-o.5,o.5] (18) 
(® denotes the convolution and Ix the indicator function on X), we can utilize the above 
result and the Fourier-Plancherel identity to construct the Fourier representation of the 
corresponding regularization operator. Up to a multiplicative constant, it equals 

P(w) = k(w) = sinc(q+l)(Wi). (19) 
2 
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This shows that only B-splines of odd order are admissible, as the even ones have negative 
parts in the Fourier spectrum (which would result in an amplification of the corresponding 
frequency components). The zeros ink stem from the fact that B1 has only compact support 
[-(k+ 1)/2, (k+ 1)/2). By using this kernel we trade reduced computational complexity in 
calculatingf(we only have to take points with llxi- xi II :S cfrom some limited neighbor
hood determined by c into account)for a possibly worse performance of the regularization 
operator as it completely ~emovesfrequencies wp with k(wp) = 0. 

Example 2 (Dirichlet kernels) 
In [Vapnik et al., 1997], a class of kernels generating Fourier expansions was introduced, 

k(x) = sin(2N + 1)x/2. (20) 
sinx/2 

(As in example 1 we consider x E ~1 to avoid tedious notation.) By construction, this 

kernel corresponds to P(w) = ~ L~-N 6(w- i). A regularization operator with these 
properties, however; may not be desirable as it only damps a finite number of frequencies 
and leaves all other frequencies unchanged which can lead to overjitting (Fig. 1 ). 
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Figure 1: Left: Interpolation with a Dirichlet Kernel of order N = 10. One can clearly ob
serve the overfitting (dashed line: interpolation, solid line: original data points, connected 
by lines). Right: Interpolation of the same data with a Gaussian Kernel of width CT2 = 1. 

Example 3 (Gaussian kernels) 
Following the exposition of Yuille and Grzywacz [ 1988] as described in [Girosi et al., 
1993], one can see that for 

I 2m 

11P!II2 = dx L ~!2m com f(x)) 2 

m 

(21) 

with 62m = 6. m and 62m+l = V' 6. m. 6. being the Laplacian and V' the Gradient opera
tor; we get Gaussians kernels 

k(x) = exp ( -~~~~2 ). (22) 

Moreover; we can provide an equivalent representation of P in terms of its Fourier prop

erties, i.e. P(w) = exp(- u2 \kxll 2
) up to a multiplicative constant. Training a SV machine 

with Gaussian RBF kernels [Scholkopf et al., 1997] corresponds to minimizing the specific 
cost function with a regularization operator of type (21 ). This also explains the good perfor
mance of SV machines in this case, as it is by no means obvious that choosing a flat fum:;tion 
in high dimensional space will correspond to a simple function in low dimensional space, 
as showed in example 2. Gaussian kernels tend to yield good performance under g'eneral 
smoothness assumptions and should be considered especially if no additional knowledge 
of the data is available. 
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6 A NEW CLASS OF SUPPORT VECTOR KERNELS 

We will follow the lines of Madych and Nelson [ 1990] as pointed out by Girosi et al. [ 1993]. 
Our main statement is that conditionally positive definite functions ( c.p.d.) generate admis
sible SV kernels. This is very useful as the property of being c.p.d. often is easier to verify 
than Mercer's condition, especially when combined with the results of Schoenberg and 
Micchelli on the connection between c.p.d. and completely monotonic functions [Schoen
berg, 1938, Micchelli, 1986]. Moreover c.p.d. functions lead to a class of SV kernels that 
do not necessarily satisfy Mercer's condition. 

Definition 1 (Conditionally positive definite functions) 
A continuous function h, defined on [0, oo), is said to be conditionally positive definite 

· ( c.p.d.) of order m on m.n if for any distinct points x1, ... , Xt E m.n and scalars c1, ... , Ct 

the quadratic form Eri=l cicih(llxi- Xj II) is nonnegative provided that E~=l Cip(xi) = 
0 for all polynomials p on m.n of degree lower than m. 

Proposition 2 (c.p.d. functions and admissible kernels) 
Define II~ the space of polynomials of degree lower than m on IRn. Every c.p.d. function 
h of order m generates an admissible Kernel for SV expansions on the space of functions 
f orthogonal to II~ by setting k(xi, Xj) := h(llxi- Xjll 2 ). 

Proof: In [Dyn, /991] and [Madych and Nelson, 1990] it was shown that c.p.d. functions 
h generate semi-norms 11-llh by 

(23) 

Provided that the projection off onto the space of polynomials of degree lower than m is 
zero. For these functions, this, however. also defines a dot product in some feature space. 
Hence they can be used as SV kernels. 

Only c.p.d. functions of order m up to 2 are of practical interest for SV methods (for 
details see [Smola and Scholkopf, 1998]). Consequently, we may use kernels like the ones 
proposed in [Girosi et al., 1993] as SV kernels: 

k(x,y) = e-.BIJx-yJJ2 Gaussian, (m = 0); (24) 

k(x,y) = -v'llx- Yll 2 + c2 multiquadric, (m = 1) (25) 

k(x,y) = 1 inverse multiquadric, (m = 0) (26) 
y'Jix-yJ12+c2 

k(x,y) = llx- Yll 2 ln llx- Yll thin plate splines, ( m = 2) (27) 

7 DISCUSSION 

We have pointed out a connection between SV kernels and regularization operators. As one 
of the possible implications of this result, we hope that it will deepen our understanding of 
SV machines and of why they have been found to exhibit high generalization ability. In 
Sec. 5, we have given examples where only the translation into the regularization frame
work provided insight in why certain kernels are preferable to others. Capacity control is 
one of the strengths of SV machines; however, this does not mean that the structure of the 
learning machine, i.e. the choice of a suitable kernel for a given task, should be disregarded. 
On the contrary, the rather general class of admissible SV kernels should be seen as another 
strength, provided that we have a means of choosing the right kernel. The newly established 
link to regularization theory can thus be seen as a tool for constructing the structure con
sisting of sets of functions in which the SV machine (approximately) performs structural 
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risk minimization (e.g. [Vapnik, 1995]). For a treatment of SV kernels in a Reproducing 
Kernel Hilbert Space context see [Girosi, 1997]. 

Finally one should leverage the theoretical results achieved for regularization operators 
for a better understanding of SVs (and vice versa). By doing so this theory might serve 
as a bridge for connecting two (so far) separate threads of machine learning. A trivial 
example for such a connection would be a Bayesian interpretation of SV machines. In 
this case the choice of a special kernel can be regarded as a prior on the hypothesis space 
with P[f] ex exp{ ->.IIF 1112). A more subtle reasoning probably will be necessary for 
understanding the capacity bounds [Vapnik, 1995] from a Regularization Network point 
of view. Future work will include an analysis of the family of polynomial kernels, which 
perform very well in Pattern Classification [SchOlkopf et al., 1995]. 
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