
Training Methods for Adaptive Boosting
of Neural Networks

Holger Schwenk
Dept.IRO

Universite de Montreal
2920 Chemin de la Tour,

Montreal, Qc, Canada, H3C 317
schwenk@iro.umontreal.ca

Yoshua Bengio
Dept.IRO

Universite de Montreal
and AT&T Laboratories, NJ

bengioy@iro.umontreal.ca

Abstract

"Boosting" is a general method for improving the performance of any
learning algorithm that consistently generates classifiers which need to
perform only slightly better than random guessing. A recently proposed
and very promising boosting algorithm is AdaBoost [5]. It has been ap
plied with great success to several benchmark machine learning problems
using rather simple learning algorithms [4], and decision trees [1, 2, 6].
In this paper we use AdaBoost to improve the performances of neural
networks. We compare training methods based on sampling the training
set and weighting the cost function. Our system achieves about 1.4%
error on a data base of online handwritten digits from more than 200
writers. Adaptive boosting of a multi-layer network achieved 1.5% error
on the UCI Letters and 8.1 % error on the UCI satellite data set.

1 Introduction
AdaBoost [4, 5] (for Adaptive Boosting) constructs a composite classifier by sequentially
training classifiers, while putting more and more emphasis on certain patterns. AdaBoost
has been applied to rather weak learning algorithms (with low capacity) [4] and to deci
sion trees [1 , 2, 6], and not yet, until now, to the best of our knowledge, to artificial neural
networks. These experiments displayed rather intriguing generalization properties, such as
continued decrease in generalization error after training error reaches zero. Previous work
ers also disagree on the reasons for the impressive generalization performance displayed
by AdaBoost on a large array of tasks. One issue raised by Breiman [1] and the authors of
AdaBoost [4] is whether some of this effect is due to a reduction in variance similar to the
one obtained from the Bagging algorithm.

In this paper we explore the application of AdaBoost to Diabolo (auto-associative) net
works and multi-layer neural networks (MLPs). In doing so, we also compare three dif-

648 H. Schwenk and Y. Bengio

ferent versions of AdaBoost: (R) training each classifier with a fixed training set obtained
by resampling with replacement from the original training set (as in [1]), (E) training by
resampling after each epoch a new training set from the original training set, and (W) train
ing by directly weighting the cost fundion (here the squared error) of the neural network.
Note that the second version (E) is a better approximation of the weighted cost function
than the first one (R), in particular when many epochs are performed. If the variance re
duction induced by averaging the hypotheses from very different models explains a good
part of the generalization performance of AdaBoost, then the weighted training version
(W) should perform worse then the resampling versions, and the fixed sample version (R)
should perform better then the continuously resampled version (E).

2 AdaBoost
AdaBoost combines the hypotheses generated by a set of classifiers trained one after the
other. The tth classifier is trained with more emphasis on certain patterns, using a cost func
tion weighted by a probability distribution Dt over the training data (Dt(i) is positive and
Li Dt(i) = 1). Some learning algorithms don't permit training with respect to a weighted
cost function. In this case sampling with replacement (using the probability distribution
Dt) can be used to approximate a weighted cost function. Examples with high probability
would then occur more often than those with low probability, while some examples may
not occur in the sample at all although their probability is not zero. This is particularly true
in the simple resampling version (labeled "R" earlier), and unlikely when a new training
set is resampled after each epoch ("E" version). Neural networks can be trained directly
with respect to a distribution over the learning data by weighting the cost function (this is
the "W" version): the squared error on the i-th pattern is weighted by the probability D t (i).
The result of training the tth classifier is a hypothesis ht : X -+ Y where Y = {I, ... , k} is
the space of labels, and X is the space of input features. After the tth round the weighted
error €t of the resulting classifier is calculated and the distribution Dt+l is computed from
D t , by increasing the probability of incorrectly labeled examples. The global decision f is
obtained by weighted voting. Figure I (left) summarizes the basic AdaBoost algorithm. It
converges (learns the training set) if each classifier yields a weighted error that is less than
50%, i.e., better than chance in the 2-c1ass case. There is also a multi-class version, called
pseudoloss-AdaBoost, that can be used when the classifier computes confidence scores for
each class. Due to lack of space, we give only the algorithm (see figure 1, right) and we
refer the reader to the references for more details [4, 5].

AdaBoost has very interesting theoretical properties, in particular it can be shown that the
error of the composite classifier on the training data decreases exponentially fast to zero [5]
as the number of combined classifiers is increased. More importantly, however, bounds
on the generalization error of such a system have been formulated [7]. These are based
on a notion of margin of classification, defined as the difference between the score of the
correct class and the strongest score of a wrong class. In the case in which there are just
two possible labels {-I, +1}, this is yf(x), where f is the composite classifier and y the
correct label. Obviously, the classification is correct if the margin is positive. We now
state the theorem bounding the generalization error of Adaboost [7] (and any classifier
obtained by a convex combination of a set of classifiers). Let H be a set of hypotheses
(from which the ht hare chosen), with VC-dimenstion d. Let f be any convex combination
of hypotheses from H. Let S be a sample of N examples chosen independently at random
according to a distribution D. Then with probability at least 1 - 8 over the random choice
of the training set S from D, the following bound is satisfied for all () > 0:

(
1 dlog2 (N/d))

PD[yf(x) ~ 0] ~ Ps[yf(x) ~ ()] + 0 jN (}2 + log(1/8) (1)

Note that this bound is independent of the number of combined hypotheses and how they

Training Methods for Adaptive Boosting of Neural Networks

Input: sequence of N examples (Xl, YI), ... , (X N , Y N)

with labels Yi E Y = {I, ... , k}
Init: Dl(i) = l/N for all i loit: letB = {(i,y): i E{l, ... ,N},y i= yd

Repeat:
1. Train neural network with respect

to distribution D t and obtain
hypothesis ht : X ~ Y

2. calculate the weighted error of h t :

Dl (i. y) = l/IBI for all (i, y) E B
Repeat:

I. Train neural network with respect
to distribution Dt and obtain
hypothesis ht : X x Y ~ [0,1]

2. calculate the pseudo-loss of ht :

649

_ " D (.) abort loop
€t - ~ t '/, if €t > ~

i:ht(x,)#y,

€t = ~ LDt(i, y)(l-ht(xi, Yd+ht(Xi' y))
(i,y)EB

3. set (3t = €t/(1 - €t)
4. update distribution Dt

D (i) - Dt(i) a O,
t+l - Zt /Jt

with c5i = (ht(Xi) = Yi)
and Zt a normalization constant

Output: final hypothesis:
1

f(x) = arg max L log Ii"
yEY /Jt

t:ht(x)=y

3. set (3t = €t/(1 - €t)
4. update distribution D t

D (i) - Dt(i,y) a~((1+ht(x"y,)-ht(x"y»
t+l ,Y - Zt /Jt

where Zt is a normalization constant

Output: final hypothesis:

f(x) = arg max L (log ;) ht(x, y)
yEY t /Jt

Figure I: AdaBoost algorithm (left), multi-class extension using confidence scores (right)

are chosen from H. The distribution of the margins however plays an important role. It can
be shown that the AdaBoost algorithm is especially well suited to the task of maximizing
the number of training examples with large margin [7].

3 The Diabolo Classifier

Normally, neural networks used for classification are trained to map an input vector to an
output vector that encodes directly the classes, usually by the so called "I-out-of-N encod
ing". An alternative approach with interesting properties is to use auto-associative neural
networks, also called autoencoders or Diabolo networks, to learn a model of each class.
In the simplest case, each autoencoder network is trained only with examples of the cor
responding class, i.e., it learns to reconstruct all examples of one class at its output. The
distance between the input vector and the reconstructed output vector expresses the likeli
hood that a particular example is part of the corresponding class. Therefore classification
is done by choosing the best fitting model. Figure 2 summarizes the basic architecture.
It shows also typical classification behavior for an online character recognition task. The
input and output vectors are (x, y)-coordinate sequences of a character. The visual repre
sentation in the figure is obtained by connecting these points. In this example the" I" is
correctly classified since the network for this class has the smallest reconstruction error.

The Diabolo classifier uses a distributed representation of the models which is much more
compact than the enumeration of references often used by distance-based classifiers like
nearest-neighbor or RBF networks. Furthermore, one has to calculate only one distance
measure for each class to recognize. This allows to incorporate knowledge by a domain
specific distance measure at a very low computational cost. In previous work [8], we have
shown that the well-known tangent-distance [11] can be used in the objective function of the
autoencoders. This Diabolo classifier has achieved state-of-the-art results in handwritten
OCR [8,9]. Recently, we have also extended the idea of a transformation invariant distance

650 H. Schwenk and Y. Bengio

1 ~ score I
0.08

1 1 6
0.13

1 ~ score 7
0.23

character input output distance decision
to classify sequence sequences measures module

Figure 2: Architecture of a Diabolo classifier

measure to online character recognition [10]. One autoencoder alone, however, can not
learn efficiently the model of a character if it is written in many different stroke orders and
directions. The architecture can be extended by using several autoencoders per class, each
one specializing on a particular writing style (subclass). For the class "0", for instance,
we would have one Diabolo network that learns a model for zeros written clockwise and
another one for zeros written counterclockwise. The assignment of the training examples to
the different subclass models should ideally be done in an unsupervised way. However, this
can be quite difficult since the number of writing styles is not known in advance and usually
the number of examples in each subclass varies a lot. Our training data base contains for
instance 100 zeros written counterclockwise, but only 3 written clockwise (there are also
some more examples written in other strange styles). Classical clustering algorithms would
probably tend to ignore subclasses with very few examples since they aren't responsible
for much of the error, but this may result in poor generalization behavior. Therefore, in
previous work we have manually assigned the subclass labels [10]. Of course, this is not a
generally satisfactory approach, and certainly infeasible when the training set is large. In
the following, we will show that the emphasizing algorithm of AdaBoost can be used to
train multiple Diabolo classifiers per class, performing a soft assignment of examples of
the training set to each network.

4 Results with Diabolo and MLP Classifiers

Experiments have been performed on three data sets: a data base of online handwritten
digits, the UeI Letters database of offline machine-printed alphabetical characters and the
UCI satellite database that is generated from Landsat Multi-spectral Scanner image data.
All data sets have a pre-defined training and test set. The Diabolo classifier was only
applied to the online data set (since it takes advantage of the structure of the input features).

The online data set was collected at Paris 6 University [10]. It is writer-independent (dif
ferent writers in training and test sets) and there are 203 writers, 1200 training examples
and 830 test examples. Each writer gave only one example per class. Therefore, there are
many different writing styles, with very different frequencies. We only applied a simple
pr~processing: the characters were resamfled to 11 points, centered and size normalized
to a (x,y)-coordinate sequence in [-1, 1]2 . Since the Diabolo classifier with tangent dis
tance [10] is invariant to small transformations we don't need to extract further features.

Table 1 summarizes the results on the test set of different approaches before using Ada
Boost. The Diabolo classifier with hand-selected sub-classes in the training set performs
best since it is invariant to transformations and since it can deal with the different writing
styles. The experiments suggest that fully connected neural networks are not well suited
for this task: small nets do poorly on both training and test sets, while large nets overfit.

