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Abstract

Accounts of neurological disorders often posit damage to a specific
functional pathway of the brain. Farah (1990) has proposed an alterna-
tive class of explanations involving partial damage to multiple path-
ways. We explore this explanation for optic aphasia, a disorder in which
severe performance deficits are observed when patients are asked to
name visually presented objects, but surprisingly, performance is rela-
tively normal on naming objects from auditory cues and on gesturing
the appropriate use of visually presented objects. We model this highly
specific deficit through partial damage to two pathways—one that maps
visual input to semantics, and the other that maps semantics to naming
responses. The effect of this damage is superadditive, meaning that
tasks which require one pathway or the other show little or no perfor-
mance deficit, but the damage is manifested when a task requires both
pathways (i.e., naming visually presented objects). Our model explains
other phenomena associated with optic aphasia, and makes testable
experimental predictions.

Neuropsychology is the study of disrupted cognition resulting from damage to functional
systems in the brain. Generally, accounts of neuropsychological disorders posit damage to
a particular functional system or a disconnection between systems. Farah (1990) sug-
gested an alternative class of explanations for neuropsychological disorders: partial dam-
age to multiple systems, which is manifested through interactions among the loci of
damage. We explore this explanation for the neuropsychological disorder of optic aphasia.

Optic aphasia, arising from unilateral left posterior lesions, including occipital cortex
and the splenium of the corpus callosum (Schnider, Benson, & Scharre, 1994), is marked
by a deficit in naming visually presented objects, hereafter referred to as visual naming
(Farah, 1990). However, patients can demonstrate recognition of visually presented
objects nonverbally, for example, by gesturing the appropriate use of an object or sorting
visual items into their proper superordinate categories (hereafter, visual gesturing).
Patients can also name objects by nonvisual cues such as a verbal definition or typical
sounds made by the objects (hereafter, auditory naming). The highly specific nature of the
deficit rules out an explanation in terms of damage to a single pathway in a standard model
of visual naming (Figure 1), suggesting that a more complex model is required, involving
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FIGURE 1. A standard box-and-arrow
model of visual naming. The boxes denote name gesture
levels of representation, and the arrows 3 7y

denote pathways mapping from one level of LI

representation to another. Although optic semantic
aphasia cannot be explained by damage to
the vision-to-semantics pathway or the + 1
semantics-to-naming pathway, Farah
(1990) proposed an explanation in terms of visual auditory
partial damage to both pathways (the X’s).

multiple semantic systems or multiple pathways to visual naming. However, a mere parsi-
monious account is suggested by Farah (1990): Optic aphasia might arise from partial
lesions to two pathways in the standard model—those connecting visual input to seman-
tics, and semantics to naming—and the effect of damage to these pathways is superaddi-
tive, meaning that tasks which require only one of these pathways (e.g., visual gesturing,
or auditory naming) will be relatively unimpaired, whereas tasks requiring both pathways
(e.g., visual naming) will show a significant deficit.

1 A MODEL OF SUPERADDITIVE IMPAIRMENTS

We present a computational model of the superadditive-impairment theory of optic apha-
sia by elaborating the architecture of Figure 1. The architecture has four pathways: visual
input to semantics (V—S), auditory input to semantics (A—S), semantics to naming
(S—N), and semantics to gesturing (S—G). Each pathway acts as an associative memory.
The critical property of a pathway that is required to explain optic aphasia is a speed-accu-
racy trade off: The initial output of a pathway appears rapidly, but it may be inaccurate.
This “quick and dirty” guess is refined over time, and the pathway output asymptotically
converges on the best interpretation of the input.

We implement a pathway using the architecture suggested by Mathis and Mozer
(1996). In this architecture, inputs are mapped to their best interpretations by means of a
two-stage process (Figure 2). First, a quick, one-shot mapping is performed by a multi-
layer feedforward connectionist network to transform the input directly to its correspond-
ing output. This is followed by a slower iterative clean-up process carried out by a
recurrent attractor network. This architecture shows a speed-accuracy trade off by virtue
of the assumption that the feedforward mapping network does not have the capacity to
produce exactly the right output to every input, especially when the inputs are corrupted
by noise or are otherwise incomplete. Consequently, the clean up stage is required to pro-
duce a sensible interpretation of the noisy output of the mapping network.

Fully distributed attractor networks have been used for similar purposes (e.g., Plaut
& Shallice, 1993). For simplicity, we adopt a localist-attractor network with a layer of
state units and a layer of radial basis function (RBF) units, one RBF unit per attractor.
Each RBF or attractor unit measures the distance of the current state to the attractor that it
represents. The activity of attractor unit ¢, g;, is:

FIGURE 2. Connectionist implementa- ‘ pathway output

tion of a processing pathway. The path-

way consists of feedforward mapping

network followed by a recurrent clean- clean up network
up or attractor network. Circles denote

connectionist processing units and
arrows denote connections between :
units or between layers of units. mapping network

pathway input
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where s(2) is the state unit activity vector at time ¢, |; is the vector denoting the location of
attractor i, and P, is the strength of the attractor. The strength determines the region of the
state space over which an attractor will exert its pull, and also the rate at which the state
will converge to the attractor. The state units receive input from the mapping network and
from the attractor units and are updated as follows:

si(1) = di(De (1) + (1 -dy(1)) Y a;(t=1); (3
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where s;(2) is the activity of state unit { at time 1, ¢; is the ith output of the mapping net, [L;;
is the ith element of attractor j, and d, is given by

2,(t—1)
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where h[.] is a linear threshold function that bounds activity between —1 and +1, &; is a
weighted time average of the ith output of the mapping net,

e;(t) = ae(t)+ (1 -oa)e;(t-1) (&)

In all simulations, o = .02.

The activity of the state units are governed by two forces—the external input from
the feedforward net (first term in Equation 3) and the attractor unit activities (second
term). The parameter d; acts as a kind of attentional mechanism that modulates the relative
influence of these two forces. The basic idea is that when the input coming from the map-
ping net is changing, the system should be responsive to the input and should not yet be
concerned with interpreting the input. In this case, the input is copied straight through to
the state units and hence d; should have a value close to 1. When the input begins to stabi-
lize, however, the focus shifts to interpreting the input and following the dynamics of the
attractor network. This shift corresponds to d; being lowered to zero. The weighted time
average in the update rule for d; is what allows for the smooth transition of the function to
its new value. For certain constructions of the function d, Zemel and Mozer (in prepara-
tion) have proven convergence of the algorithm to an attractor.

Apart from speed-accuracy trade off, these dynamics have another important conse-
quence for the present model, particularly with respect to cascading pathways. If pathway
A feeds into pathway B, such as V—S feeding into S—N, then the state unit activities of A
act as the input to B. Because these activities change over time as the state approaches a
well-formed state, the dynamics of pathway B can be quite complex as it is forced to deal
with an unstable input. This property is important in explaining several phenomena associ-
ated with optic aphasia.

d,-(!') = h|:l — (4)

1.1 PATTERN GENERATION

Patterns were constructed for each of the five representational spaces: visual and auditory
input, semantic, name and gesture responses. Each representational space was arbitrarily
made to be 200 dimensional. We generated 200 binary-valued (-1,+1) patterns in each
space, which were meant to correspond to known entities of that representational domain.

For the visual, auditory, and semantic spaces, patterns were partitioned into 50 simi-
larity clusters with 4 siblings per cluster. Patterns were chosen randomly subject to two
constraints: patterns in different clusters had to be at least 80" apart, and siblings had to be
between 25° and 50" apart. Because similarity of patterns in the name and gesture spaces
was irrelevant to our modeling, we did not impose a similarity structure on these spaces.
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Instead, we generated patterns in these spaces at random subject to the constraint that
every pattern had to be at least 60° from every other.

After generating patterns in each of the representational spaces, we established arbi-
trary correspondences among the patterns such that visual pattern n, auditory pattern n,
semantic pattern n, name pattern n, and gesture pattern n all represented the same concept.
That is, the appropriate response in a visual-naming task to visual pattern n would be
semantic pattern n and name pattern 7.

1.2 TRAINING PROCEDURE

The feedforward networks in the four pathways (V—5S, A—-S, S—5N, and S—G) were
independently trained on all 200 associations using back propagation. Each of these net-
works contained a single hidden layer of 150 units, and all units in the network used the
symmetric activation function to give activities in the range [-1,+1]. The amount of train-
ing was chosen such that performance on the training examples was not perfect; usually
several elements in the output would be erroneous—i.e., have the wrong sign—and others
would not be exactly correct—i.e., —~1 or +1. This was done to embody the architectural
assumption that the feedforward net does not have the capacity to map every input to
exactly the right output, and hence, the clean-up process is required.

Training was not required for the clean-up network. Due to the localist representation
of attractors in the clean-up network, it was trivial to hand wire each clean-up net with the
200 attractors for its domain, along with one rest-state attractor. All attractor strengths
were initialized to the same value, B=15, except the rest-state attractor, for which B=5. The
rest-state attractor required a lower strength so that even a weak external input would be
sufficient to kick the attractor network out of the rest state.

1.3 SIMULATION METHODOLOGY

After each pathway had been trained, the model was damaged by “lesioning” or
removing a fraction y of the connections in the V—S and S—N mapping networks. The
lesioned connections were chosen at random and an equal fraction was removed from the
two pathways. The clean-up nets were not damaged. The architecture was damaged a total
of 30 different times, creating 30 simulated patients who were tested on each of the four
tasks and on all 200 input patterns for a task. The results we report come from averaging
across simulated patients and input patterns. Responses were determined after the system
had been given sufficient time to relax into a name or gesture attractor, which was taken to
be the response. Each response was classified as one of the following mutually exclusive
response types: correct, perseveration (response is the same as that produced on any of the
three immediately preceding trials), visual error (the visual pattern corresponding to the
incorrect response is a sibling of the visual pattern corresponding to the correct response),
semantic error, visual+semantic error, or other error.

1.4 PRIMING MECHANISM

Priming—the increased availability of recently experienced stimuli—has been found
across a wide variety of tasks in normal subjects. We included priming in our model as a
strengthening (increasing the P; parameter) of recently visited attractors (see Mathis &
Mozer 1996, for details, and Becker, Behrmann, & Moscovitch, 1993, for a related
approach). In the damaged model, this mechanism often gave rise to perseverations.

2 RESULTS

We have examined the model’s behavior as we varied the amount of damage, quantified by
the parameter Y. However, we report on the performance of simulated patients with y=.30.
This intermediate amount of damage yielded no floor or ceiling effects, and also produced
error rates for the visual-naming task in the range of 30-40%, roughly the median perfor-
mance of patients in the literature.












