Monotonic Networks

Joseph Sill
Computation and Neural Systems program
California Institute of Technology
MC 136-93, Pasadena, CA 91125
email: joe@cs.caltech.edu

Abstract

Monotonicity is a constraint which arises in many application do-
mains. We present a machine learning model, the monotonic net-
work, for which monotonicity can be enforced exactly, i.e., by virtue
of functional form. A straightforward method for implementing and
training a monotonic network is described. Monotonic networks
are proven to be universal approximators of continuous, differen-
tiable monotonic functions. We apply monotonic networks to a
real-world task in corporate bond rating prediction and compare
them to other approaches.

1 Introduction

Several recent papers in machine learning have emphasized the importance of pri-
ors and domain-specific knowledge. In their well-known presentation of the bias-
variance tradeoff (Geman and Bienenstock, 1992), Geman and Bienenstock conclude
by arguing that the crucial issue in learning is the determination of the “right bi-
ases” which constrain the model in the appropriate way given the task at hand.
The No-Free-Lunch theorem of Wolpert (Wolpert, 1996) shows, under the 0-1 error
measure, that if all target functions are equally likely a priori, then all possible
learning methods do equally well in terms of average performance over all targets.
One is led to the conclusion that consistently good performance is possible only
with some agreement between the modeler’s biases and the true (non-flat) prior.
Finally, the work of Abu-Mostafa on learning from hints (Abu-Mostafa, 1990) has
shown both theoretically (Abu-Mostafa, 1993) and experimentally (Abu-Mostafa,
1995) that the use of prior knowledge can be highly beneficial to learning systems.

One piece of prior information that arises in many applications is the monotonicity
constraint, which asserts that an increase in a particular input cannot result in a
decrease in the output. A method was presented in (Sill and Abu-Mostafa, 1996)
which enforces monotonicity approximately by adding a second term measuring

662 J sill

“monotonicity error” to the usual error measure. This technique was shown to
yield improved error rates on real-world applications. Unfortunately, the method
can be quite expensive computationally. It would be useful to have a model which
obeys monotonicity exactly, i.e., by virtue of functional form.

We present here such a model, which we will refer to as a monotonic network.
A monotonic network implements a piecewise-linear surface by taking maximum
and minimum operations on groups of hyperplanes. Monotonicity constraints are
enforced by constraining the signs of the hyperplane weights. Monotonic networks
can be trained using the usual gradient-based optimization methods typically used
with other models such as feedforward neural networks. Armstrong (Armstrong et.
al. 1996) has developed a model called the adaptive logic network which is capable
of enforcing monotonicity and appears to have some similarities to the approach
presented here. The adaptive logic network, however, 1s available only through a
commercial software package. The training algorithms are proprietary and have
not been fully disclosed in academic journals. The monotonic network therefore
represents (to the best of our knowledge) the first model to be presented in an
academic setting which has the ability to enforce monotonicity.

Section II describes the architecture and training procedure for monotonic networks.
Section III presents a proof that monotonic networks can uniformly approximate
any continuous monotonic function with bounded partial derivatives to an arbitrary
level of accuracy. Monotonic networks are applied to a real-world problem in bond
rating prediction in Section IV. In Section V, we discuss the results and consider
future directions.

2 Architecture and Training Procedure

A monotonic network has a feedforward, three-layer (two hidden-layer) architecture
(Fig. 1). The first layer of units compute different linear combinations of the input
vector. If increasing monotonicity is desired for a particular input, then all the
weights connected to that input are constrained to be positive. Similarly, weights
connected to an input where decreasing monotonicity is required are constrained to
be negative. The first layer units are partitioned into several groups (the number
of units in each group is not necessarily the same). Corresponding to each group is
a second layer unit, which computes the maximum over all first-layer units within
the group. The final output unit computes the minimum over all groups.

More formally, if we have K groups with outputs g;,g2,...9k, and if group k
consists of hx hyperplanes w1 w(ki2) (ohe) thepn
gk (%) = mjaxw(k’j) x—t*D 1< < iy
Let y be the final output of the network. Then
y = min g (x)
or, for classification problems,
y = o(min g (x))

where o(u) = e.g. ﬁiT“

Monotonic Networks 663

€— linear units

All weights
positive

T T T

Input Vector

Figure 1: This monotonic network obeys increasing monotonicity in all 3 inputs
because all weights in the first layer are constrained to be positive.

In the discussions which follow, it will be useful to define the term active. We will
call a group ! active at x if

gi(x) = n'iingk(x)

, 1.e., if the group determines the output of the network at that point. Similarly, we
will say that a hyperplane is active at x if its group is active at x and the hyperplane
is the maximum over all hyperplanes in the group.

As will be shown in the following section, the three-layer architecture allows a mono-
tonic network to approximate any continuous, differentiable monotonic function
arbitrarily well, given sufficiently many groups and sufficiently many hyperplanes
within each group. The maximum operation within each group allows the network
to approximate convex (positive second derivative) surfaces, while the minimum op-
eration over groups enables the network to implement the concave (negative second
derivative) areas of the target function (Figure 2).

o~

network Sat group 1
output i active

group 2
active

P

input

Figure 2: This surface is implemented by a monotonic network consisting of three
groups. The first and third groups consist of three hyperplanes, while the second
group has only two.

Monotonic networks can be trained using many of the standard gradient-based
optimization techniques commonly used in machine learning. The gradient for

664 J. Sill

each hyperplane is found by computing the error over all examples for which the
hyperplane is active. After the parameter update is made according to the rule of
the optimization technique, each training example is reassigned to the hyperplane
that is now active at that point. The set of examples for which a hyperplane is
active can therefore change during the course of training.

The constraints on the signs of the weights are enforced using an exponential
transformation. If increasing monotonicity is desired in input variable i, then
V4, k the weights corresponding to the input are represented as w;(#%) = =7
The optimization algorithm can modify z}j'k) freely during training while main-
taining the cc:xj_ligraint. If decreasing monotonicity is required, then Vj, k we take
w; k) = =™,

3 Universal Approximation Capability

In this section, we demonstrate that monotonic networks have the capacity to ap-
proximate uniformly to an arbitrary degree of accuracy any continuous, bounded,
differentiable function on the unit hypercube [0, 1] which is monotonic in all vari-
ables and has bounded partial derivatives. We will say that x’ dominates x if
V1<d< D,z > z4. A function m is monotonic in all variables if it satisfies the
constraint that Vx,x’, if x’ dominates x then m(x’) > m(x).

Theorem 3.1 Let m(x) be any continuous, bounded monotonic function with
bounded partial derivatives, mapping [0,1]” to R. Then there exists a function
Mpee(x) which can be implemented by a monotonic network and is such that, for
any € and any x € [0,1]? ||m(x) — mpee(x)] < €.

Proof:

Let b be the maximum value and a be the minimum value which m takes on [0, 1]?.
Let o bound the magnitude of all partial first derivatives of m on [0,1]”. Define
an equispaced grid of points on [0, 1]?, where § = % is the spacing between grid
points along each dimension. lLe., the grid is the set S of points (14, i34, ...ipd)
where 1 <4 < n,1 < i3 < n,...1 €ip < n. Corresponding to each grid point
x' = (zf, 5, ...2p), assign a group consisting of D+1 hyperplanes. One hyperplane
in the group is the constant output plane y = m(x’). In addition, for each dimension
d, place a hyperplane y = y(zq4 — ;) + m(x’) , where v > ‘5;“. This construction
ensures that the group associated with x’ cannot be active at any point x* where
there exists a d such that =} — 2}, > 4, since the group’s output at such a point
must be greater than b and hence greater than the output of a group associated
with another grid point.

Now consider any point x € [0, 1]”. Let () be the unique grid point in S such that
Vd, 0 < 24 — 541 < 4, i.e., s(1) is the closest grid point to x which x dominates.
Then we can show that mpe(x) > m(s(1)). Consider an arbitrary grid point s’ #
s(1). By the monotonicity of m, if s’ dominates s(1), then m(s’) > m(s(?)), and
hence, the group associated with s’ has a constant output hyperplane y = m(s’) >
m(s(1)) and therefore outputs a value > m(s(1)) at x. If s’ does not dominate s(1),
then there exists a d such that s4(1) > s%. Therefore, x4 — s/, > J§, meaning that
the output of the group associated with s’ is at least b > m(s(1)). All groups have
output at least as large as m(s(1)), so we have indeed shown that mpe(x) > m(s(V)).
Now consider the grid point s(2) that is obtained by adding & to each coordinate of
s(1). The group associated with s(2) outputs m(s(?)) at x, so mp.(x) < m(s(?).
Therefore, we have m(s(!)) < mpe(x) < m(s(®). Since x dominates s(!) and

