
Monotonic Networks

Joseph Sill
Computation and Neural Systems program

California Institute of Technology
MC 136-93, Pasadena, CA 91125

email: joe@cs.caltech.edu

Abstract

Monotonicity is a constraint which arises in many application do
mains. We present a machine learning model, the monotonic net
work, for which monotonicity can be enforced exactly, i.e., by virtue
offunctional form . A straightforward method for implementing and
training a monotonic network is described. Monotonic networks
are proven to be universal approximators of continuous, differen
tiable monotonic functions. We apply monotonic networks to a
real-world task in corporate bond rating prediction and compare
them to other approaches.

1 Introduction

Several recent papers in machine learning have emphasized the importance of pri
ors and domain-specific knowledge. In their well-known presentation of the bias
variance tradeoff (Geman and Bienenstock, 1992)' Geman and Bienenstock conclude
by arguing that the crucial issue in learning is the determination of the "right bi
ases" which constrain the model in the appropriate way given the task at hand .
The No-Free-Lunch theorem of Wolpert (Wolpert, 1996) shows, under the 0-1 error
measure, that if all target functions are equally likely a priori, then all possible
learning methods do equally well in terms of average performance over all targets .
One is led to the conclusion that consistently good performance is possible only
with some agreement between the modeler's biases and the true (non-flat) prior.
Finally, the work of Abu-Mostafa on learning from hints (Abu-Mostafa, 1990) has
shown both theoretically (Abu-Mostafa, 1993) and experimentally (Abu-Mostafa,
1995) that the use of prior knowledge can be highly beneficial to learning systems.

One piece of prior information that arises in many applications is the monotonicity
constraint, which asserts that an increase in a particular input cannot result in a
decrease in the output. A method was presented in (Sill and Abu-Mostafa, 1996)
which enforces monotonicity approximately by adding a second term measuring

662 J.Sill

"monotonicity error" to the usual error measure. This technique was shown to
yield improved error rates on real-world applications. Unfortunately, the method
can be quite expensive computationally. It would be useful to have a model which
obeys monotonicity exactly, i.e., by virtue of functional form .

We present here such a model, which we will refer to as a monotonic network.
A monotonic network implements a piecewise-linear surface by taking maximum
and minimum operations on groups of hyperplanes. Monotonicity constraint'> are
enforced by constraining the signs of the hyperplane weights. Monotonic networks
can be trained using the usual gradient-based optimization methods typically used
with other models such as feedforward neural networks. Armstrong (Armstrong et.
al. 1996) has developed a model called the adaptive logic network which is capable
of enforcing monotonicity and appears to have some similarities to the approach
presented here. The adaptive logic network, however, is available only through a
commercial software package. The training algorithms are proprietary and have
not been fully disclosed in academic journals. The monotonic network therefore
represents (to the best of our knowledge) the first model to be presented in an
academic setting which has the ability to enforce monotonicity.

Section II describes the architecture and training procedure for monotonic networks.
Section III presents a proof that monotonic networks can uniformly approximate
any continuous monotonic function with bounded partial derivatives to an arbitrary
level of accuracy. Monotonic networks are applied to a real-world problem in bond
rating prediction in Section IV. In Section V, we discuss the results and consider
future directions.

2 Architecture and Training Procedure

A monotonic network has a feedforward, three-layer (two hidden-layer) architecture
(Fig. 1). The first layer of units compute different linear combinations of the input
vector. If increasing monotonicity is desired for a particular input, then all the
weights connected to that input are constrained to be positive. Similarly, weights
connected to an input where decreasing monotonicity is required are constrained to
be negative. The first layer units are partitioned into several groups (the number
of units in each group is not necessarily the same). Corresponding to each group is
a second layer unit, which computes the maximum over all first-layer units within
the group. The final output unit computes the minimum over all groups.

More formally, if we have f{ groups with outputs 91,92, ... 9K, and if group k
consists of hk hyperplanes w(k, 1) , w(k,2), ... w(k,hk), then

9k(X) = m~xw(kJ) . x - t(k,i), 1::; j ::; hk
3

Let y be the final output of the network. Then

or, for classification problems,

where u(u) = e.g. l+!-u.

Monotonic Networks 663

positive

Input Vector

Figure 1: This monotonic network obeys increasing monotonicity in all 3 inputs
because all weights in the first layer are constrained to be positive.

In the discussions which follow, it will be useful to define the term active. We will
call a group 1 active at x if

g/(x) = mingk(x)
k

, i.e., if the group determines the output of the network at that point . Similarly, we
will say that a hyperplane is active at x if its group is active at x and the hyperplane
is the maximum over all hyperplanes in the group.

As will be shown in the following section, the three-layer architecture allows a mono
tonic network to approximate any continuous, differentiable monotonic function
arbitrarily well, given sufficiently many groups and sufficiently many hyperplanes
within each group. The maximum operation within each group allows the network
to approximate convex (positive second derivative) surfaces, while the minimum op
eration over groups enables the network to implement the concave (negative second
derivative) areas of the target function (Figure 2).

network

output

...... .. '

,

, , , ,

input

group I

active

group 2
active

group 3
active

Figure 2: This surface is implemented by a monotonic network consisting of three
groups. The first and third groups consist of three hyperplanes, while the second
group has only two.

Monotonic networks can be trained using many of the standard gradient-based
optimization techniques commonly used in machine learning. The gradient for

664 1. Sill

each hyperplane is found by computing the error over all examples for which the
hyperplane is active. After the parameter update is made according to the rule of
the optimization technique, each training example is reassigned to the hyperplane
that is now active at that point. The set of examples for which a hyperplane is
active can therefore change during the course of training.

The constraints on the signs of the weights are enforced using an exponential
transformation. If increasing monotonicity is desired in input variable i, then
V j, k the weights corresponding to the input are represented as Wi (j ,k) ::::: eZ, (i ,k) .

The optimization algorithm can modify zlj,k) freely during training while main
taining the constraint. If decreasing monotonicity is required, then Vj, k we take

(. k) (i,k)
Wi)' = _ez , .

3 Universal Approximation Capability

In this section, we demonstrate that monotonic networks have the capacity to ap
proximate uniformly to an arbitrary degree of accuracy any continuous, bounded,
differentiable function on the unit hypercube [0, I]D which is monotonic in all vari
ables and has bounded partial derivatives. We will say that x' dominates x if
VI :S d:S D, x~ ~ Xd. A function m is monotonic in all variables if it satisfies the
constraint that Vx,x', if x' dominates x then m(x') ~ m(x).

Theorem 3.1 Let m(x) be any continuous, bounded monotonic function with
bounded partial derivatives, mapping [0, I]D to R. Then there exists a function
mnet(x) which can be implemented by a monotonic network and is such that, for
any f and any x E [0, I]D ,Im(x) - mnet(x)1 < f.
Proof:

Let b be the maximum value and a be the minimum value which m takes on [0, I]D.
Let a bound the magnitude of all partial first derivatives of m on [0, I]D. Define
an equispaced grid of points on [0, 1]D, where ° = ~ is the spacing between grid
points along each dimension. I.e., the grid is the set S of points (ilO, i 2o, .. . iDOl
where 1 :S i1 :S n,1 :S i2 :S n, ... 1 :S iD :S n. Corresponding to each grid point
x' = (x~, x~, ... xv), assign a group consisting of D+ 1 hyperplanes. One hyperplane
in the group is the constant output plane y = m(x'). In addition, for each dimension
d, place a hyperplane y = ,(Xd - x~) + m(x') , where, > b'6 a . This construction
ensures that the group associated with x' cannot be active at any point x* where
there exists a d such that xd - x~ > 0, since the group's output at such a point
must be greater than b and hence greater than the output of a group associated
with another grid point.

Now consider any point x E [0, I]D. Let S(l) be the unique grid point in S such that
Vd, ° :S Xd - si1) < 0, i.e., S(l) is the closest grid point to x which x dominates.
Then we can show that mnet(x) ~ m(s(l»). Consider an arbitrary grid point s' =f.
s(l). By the monotonicity of m, if s' dominates S(l), then m(s') ~ m(s(l»), and
hence, the group associated with s' has a constant output hyperplane y = m(s') ~
m(s(l») and therefore outputs a value ~ m(s(l») at x. If 8' does not dominate S(l),
then there exists a d such that Sd(l) > s~. Therefore, Xd - s~ ~ 0, meaning that
the output of the group associated with s' is at least b ~ m(s(l»). All groups have
output at least as large as m(s(l»), so we have indeed shown that mnet(X) ~ m(s(l»).
Now consider the grid point S(2) that is obtained by adding 0 to each coordinate of
s(l). The group associated with s(2) outputs m(s(2») at x, so mnet(x) :S m(s(2»).
Therefore, we have m(s(l») :S mnet(x) :S m(s(2»). Since x dominates s(l) and

Monotonic Networks 665

is dominated by S(2), by mono tonicity we also have m(s(l)) :S m(x) :S m(s(2)).
Im(x) - mnet(x)1 is therefore bounded by Im(s{2)) - m(s(l))I. By Taylor's theorem
for multivariate functions, we know that

for some point c on the line segment between S(I) and s(2). Given the assumptions
made at the outset, Im(s(2))-m(s(1))j, and hence, \m(x)-mnedx)1 can be bounded
by d.5Ct. We take .5 < d~ to complete the proof •.

4 Experimental Results

We tested monotonic networks on a real-world problem concerning the prediction
of corporate bond ratings. Rating agencies such as Standard & Poors (S & P) issue
bond ratings intended to assess the level of risk of default associated with the bond.
S & P ratings can range from AAA down to B- or lower.

A model which accurately predicts the S & P rating of a bond given publicly avail
able financial information about the issuer has considerable value. Rating agencies
do not rate all bonds, so an investor could use the model to assess the risk associated
with a bond which S & P has not rated. The model can also be used to anticipate
rating changes before they are announced by the agency.

The dataset, which was donated by a Wall Street firm, is made up of 196 examples.
Each training example consists of 10 financial ratios reflecting the fundamental
characteristics of the issuing firm, along with an associated rating. The meaning of
the financial ratios was not disclosed by the firm for proprietary reasons. The rating
labels were converted into integers ranging from 1 to 16. The task was treated as a
single-output regression problem rather than a 16-class classification problem.

Monotonicity constraints suggest themselves naturally in this context. Although
the meanings of the features are not revealed, it is reasonable to assume that they
consist of quantities such as profitability, debt, etc. It seems intuitive that, for
instance, the higher the profitability of the firm is , the stronger the firm is, and
hence, the higher the bond rating should be. Monotonicity was therefore enforced
in all input variables.

Three different types of models (all trained on squared error) were compared: a
linear model, standard two-layer feedforward sigmoidal neural networks, and mono
tonic networks. The 196 examples were split into 150 training examples and 46
test examples. In order to get a statistically significant evaluation of performance,
a leave-k-out procedure was implemented in which the 196 examples were split 200
different ways and each model was trained on the training set and tested on the
test set for each split. The results shown are averages over the 200 splits.

Two different approaches were used with the standard neural networks. In both
cases, the networks were trained for 2000 batch-mode iterations of gradient descent
with momentum and an adaptive learning rate, which sufficed to allow the networks
to approach minima of the training error. The first method used all 150 examples
for direct training and minimized the training error as much as possible. The
second technique split the 150 examples into 110 for direct training and 40 used for
validation, i.e., to determine when to stop training. Specifically, the mean-squared
error on the 40 examples was monitored over the course of the 2000 iterations,

666 1. Sill

and the state of the network at the iteration where lowest validation error was
obtained was taken as the final network to be tested on the test set. In both
cases, the networks were initialized with small random weights. The networks had
direct input-output connections in addition to hidden units in order to facilitate the
implementation of the linear aspects of the target function.

The monotonic networks were trained for 1000 batch-mode iterations of gradient
descent with momentum and an adaptive learning rate. The parameters of each
hyperplane in the network were initialized to be the parameters of the linear model
obtained from the training set, plus a small random perturbation. This procedure
ensured that the network was able to find a reasonably good fit to the data. Since
the meanings of the features were not known, it was not known a priori whether
increasing or decreasing mono tonicity should hold for each feature . The directions
of monotonicity were determined by observing the signs of the weights of the linear
model obtained from the training data.

Model training error test error
Linear 3.45 ± .02 4.09 ± .06

10-2-1 net 1.83 ± .01 4.22 ± .14
10-4-1 net 1.22 ± .01 4.86 ± .16
10-6-1 net 0.87 ± .01 5.57 ± .20
10-8-1 net 0.65 ± .01 5.56 ± .16

Table 1: Performance of linear model and standard networks on bond rating problem

The results support the hypothesis of a monotonic (or at least roughly monotonic)
target function. As Table 1 shows, standard neural networks have sufficient flex
ibility to fit the training data quite accurately (n-k-l network means a 2-layer
network with n inputs, k hidden units, and 1 output). However, their excessive,
non-monotonic degrees of freedom lead to overfitting, and their out-of-sample per
formance is even worse than that of a linear model. The use of early stopping
alleviates the overfitting and enables the networks to outperform the linear model.
Without the monotonicity constraint, however, standard neural networks still do
not perform as well as the monotonic networks. The results seem to be quite robust
with respect to the choice of number of hidden units for the standard networks and
number and size of groups for the monotonic networks.

Model training error test error
10-2-1 net 2.46 ± .04 3.83 ± .09
10-4-1 net 2.19 ± .05 3.82± .08
10-6-1 net 2.14 ± .05 3.77 ± .07
10-8-1 net 2.13 ± .06 3.86 ± .09

Table 2: Performance of standard networks using early stopping on bond rating
problem

5 Conclusion

We presented a model, the monotonic network, in which monotonicity constraints
can be enforced exactly, without adding a second term to the usual objective func
tion. A straightforward method for implementing and training such models was

Monotonic Networks 667

Model training error test error
2 groups, 2 planes per group 2.78 ± .05 3.71 ± .07
3 groups, 3 planes per group 2.64 ± .04 3.56 ± .06
4 groups, 4 planes per group 2.50 ± .04 3.48 ± .06
5 groups, 5 planes per group 2.44 ± .03 3.43 ± .06

Table 3: Performance of monotonic networks on bond rating problem

demonstrated, and the method was shown to outperform other methods on a real
world problem.

Several areas of research regarding monotonic networks need to be addressed in
the future. One issue concerns the choice of the number of groups and number of
planes in each group. In general, the usual bias-variance tradeoff that holds for
other models will apply here, and the optimal number of groups and planes will be
quite difficult to determine a priori. There may be instances where additional prior
information regarding the convexity or concavity of the target function can guide
the decision, however. Another interesting observation is that a monotonic network
could also be implemented by reversing the maximum and minimum operations,
i.e., by taking the maximum over groups where each group outputs the minimum
over all of its hyperplanes. It will be worthwhile to try to understand when one
approach or the other is most appropriate.

Acknowledgments

The author is very grateful to Yaser Abu-Mostafa for considerable guidance. I also
thank John Moody for supplying the data. Amir Atiya, Eric Bax, Zehra Cataltepe,
Malik Magdon-Ismail, Alexander Nicholson, and Xubo Song supplied many useful
comments.

References

[1] S. Geman and E. Bienenstock (1992). Neural Networks and the Bias-Variance
Dilemma. Neural Computation 4, pp 1-58.

[2] D. Wolpert (1996). The Lack of A Priori Distinctions Between Learning Algo
rithms. Neural Computation 8, pp 1341-1390.

[3] Y. Abu-Mostafa (1990). Learning from Hints in Neural Networks Journal of
Complexity 6, 192-198.

[4] Y. Abu-Mostafa (1993) Hints and the VC Dimension Neural Computation 4,
278-288

[5] Y. Abu-Mostafa (1995) Financial Market Applications of Learning from Hints
Neural Networks in the Capital Markets, A. Refenes, ed., 221-232. Wiley, London,
UK.

[6] J. Sill and Y. Abu-Mostafa (1996) Monotonicity Hints. To appear in it Advances
in Neural Information Processing Systems 9.

[7] W.W. Armstrong, C. Chu, M. M. Thomas (1996) Feasibility of using Adaptive
Logic Networks to Predict Compressor Unit Failure Applications of Neural Networks
in Environment, Energy, and Health, Chapter 12. P. Keller, S. Hashem, L. Kangas,
R. Kouzes, eds, World Scientific Publishing Company, Ltd., London.

