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Multiple-instance learning is a variation on supervised learning, where the 
task is to learn a concept given positive and negative bags of instances. 
Each bag may contain many instances, but a bag is labeled positive even 
if only one of the instances in it falls within the concept. A bag is labeled 
negative only if all the instances in it are negative. We describe a new 
general framework, called Diverse Density, for solving multiple-instance 
learning problems. We apply this framework to learn a simple description 
of a person from a series of images (bags) containing that person, to a stock 
selection problem, and to the drug activity prediction problem. 

1 Introduction 

One ofthe drawbacks of applying the supervised learning model is that it is not always possible 
for a teacher to provide labeled examples for training. Multiple-instance learning provides a 
new way of modeling the teacher's weakness. Instead of receiving a set of instances which 
are labeled positive or negative, the learner receives a set of bags that are labeled positive or 
negative. Each bag contains many instances. A bag is labeled negative if all the instances in 
it are negative. On the other hand, a bag is labeled positive if there is at least one instance in it 
which is positive. From a collection of labeled bags, the learner tries to induce a concept that 
will label individual instances correctly. This problem is harder than even noisy supervised 
learning since the ratio of negative to positive instances in a positively-labeled bag (the noise 
ratio) can be arbitrarily high. 

The first application of multiple-instance learning was to drug activity prediction. In the 
activity prediction application, one objective is to predict whether a candidate drug molecule 
will bind strongly to a target protein known to be involved in some disease state. Typically, 
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one has examples of molecules that bind well to the target protein and also of molecules that 
do not bind well. Much as in a lock and key, shape is the most important factor in determining 
whether a drug molecule and the target protein will bind. However, drug molecules are 
flexible, so they can adopt a wide range of shapes. A positive example does not convey what 
shape the molecule took in order to bind - only that one of the shapes that the molecule can 
~ake was the right one. However, a negative example means that none of the shapes that the 
molecule can achieve was the right key. 

The multiple-instance learning model was only recently formalized by [Dietterich et ai., 1997]. 
They assume a hypothesis class of axis-parallel rectangles, and develop algorithms for dealing 
with the drug activity prediction problem described above. This work was followed by [Long 
and Tan, 1996], where a high-degree polynomial PAC bound was given for the number of 
examples needed to learn in the multiple-instance learning model. [Auer, 1997] gives a more 
efficient algorithm, and [Blum and Kalai, 1998] shows that learning from multiple-instance 
examples is reducible to PAC-learning with two sided noise and to the Statistical Query model. 
Unfortunately, the last three papers make the restrictive assumption that all instances from all 
bags are generated independently. 

In this paper, we describe a framework called Diverse Density for solving multiple-instance 
problems. Diverse Density is a measure of the intersection of the positive bags minus the union 
of the negative bags. By maximizing Diverse Density we can find the point of intersection 
(the desired concept), and also the set of feature weights that lead to the best intersection. 
We show results of applying this algorithm to a difficult synthetic training set as well as the 
"musk" data set from [Dietterich et ai., 1997]. We then use Diverse Density in two novel 
applications: one is to learn a simple description of a person from a series of images that are 
labeled positive if the person is somewhere in the image and negative otherwise. The other is 
to deal with a high amount of noise in a stock selection problem. 

2 Diverse Density 

We motivate the idea of Diverse Density through a molecular example. Suppose that the 
shape of a candidate molecule can be adequately described by a feature vector. One instance 
of the molecule is therefore represented as a point in n-dimensional feature space. As the 
molecule changes its shape (through both rigid and non-rigid transformations), it will trace out 
a manifold through this n-dimensional space l . Figure l(a) shows the paths of four molecules 
through a 2-dimensional feature space. 

If a candidate molecule is labeled positive, we know that in at least one place along the 
manifold, it took on the right shape for it to fit into the target protein. If the molecule is labeled 
negative, we know that none of the conformations along its manifold will allow binding with 
the target protein. If we assume that there is only one shape that will bind to the target protein, 
what do the positive and negative manifolds tell us about the location of the correct shape 
in feature space? The answer: it is where all positive feature-manifolds intersect without 
intersecting any negative feature-manifolds. For example, in Figure lea) it is point A. 

Unfortunately, a multiple-instance bag does not give us complete distribution information, 
but only some arbitrary sample from that distribution. In fact, in applications other than 
drug discovery, there is not even a notion of an underlying continuous manifold. Therefore, 
Figure l(a) becomes Figure l(b). The problem of trying to find an intersection changes 

I In practice, one needs to restrict consideration to shapes of the molecule that have sufficiently low 
potential energy. But, we ignore this restriction in this simple illustration. 
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Figure 1: A motivating example for Diverse Density 

to a problem of trying to find an area where there is both high density of positive points 
and low density of negative points. The difficulty with using regular density is illustrated in 
Figure 1 (b), Section B. We are not just looking for high density, but high "Diverse Density". 
We define Diverse Density at a point to be a measure of how many different positive bags have 
instances near that point, and how far the negative instances are from that point. 

2.1 Algorithms for multiple-instance learning 

In this section, we derive a probabilistic measure of Diverse Density, and test it on a difficult 
artificial data set. We denote positive bags as Bt, the ph point in that bag as Bt, and the 

value of the kth feature of that point as Bt k ' Likewise, BiJ represents a negative point. 
Assuming for now that the true concept is a single point t, we can find it by maximizing 
Pr(x = t I Bt, ... , B;;, B], ... , B;) over all points x in feature space. If we use Bayes' 
rule and an uninformative prior over the concept location, this is equivalent to maximizing 
the likelihood Pr( Bt , . .. , B;;, B] , ... ,B; I x = t). By making the additional assumption 
that the bags are conditionally independent given the target concept t, the best hypothesis is 
argmaxx TIi Pr(Bt I x = t) TIi Pr(B; I x = t). Using Bayes' rule once more (and again 
assuming a uniform prior over concept location), this is equivalent to 

argm:x II Pr(x = t I Bn II Pr(x = t I B i-) · (1) 
i i 

This is a general definition of maximum Diverse Density, but we need to define the terms in the 
products to instantiate it. One possibility is a noisy-or model: the probability that not all points 
missed the target is Pr(x = t I Bt) = Pr(x = t I Bi1, B:!i, . .. ) = 1-TIj(I-Pr(x = tIBt», 

and likewise Pre x = t I Bj-) = TIj (1 - Pr( x = t I Bij». We model the causal probability of 
an individual instance on a potential target as related to the distance between them. Namely, 
Pre x = t I Bij) = exp( - II Bij - x 11 2 ). Intuitively, if one of the instances in a positive bag 
is close to x, then Pre x = t I Bt) is high. Likewise, if every positive bag has an instance 
close to x and no negative bags are close to x, then x will have high Diverse Density. Diverse 
Density at an intersection of n bags is exponentially higher than it is at an intersection of n - 1 
bags, yet all it takes is one well placed negative instance to drive the Diverse Density down. 
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Figure 2: Negative and positive bags drawn from the same distribution, but labeled according 
to their intersection with the middle square. Negative instances are dots, positive are numbers. 
The square contains at least one instance from every positive bag and no negatives, 

The Euclidean distance metric used to measure "closeness" depends on the features that 
describe the instances. It is likely that some of the features are irrelevant, or that some should 
be weighted to be more important than others. Luckily, we can use the same framework to 
find not only the best location in feature space, but also the best weighting of the features. 
Once again, we find the best scaling of the individual features by finding the scalings that 
maximize Diverse Density. The algorithm returns both a location x and a scaling vector s, 
where 1/ Bij - X W= Lk ShBijk - Xk)2 . 

Note that the assumption that all bags intersect at a single point is not necessary. We can 
assume more complicated concepts, such as for example a disjunctive concept ta V to . In this 
case, we maximize over a pair of locations Xa and Xo and define Pr(xa = ta V Xb = to I 
Bij) = maXXa ,Xb(Pr(Xa = ta I Bij ), Pr(xo = to I Bij )). 

To test the algorithm, we created an artificial data set: 5 positive and 5 negative bags, each with 
50 instances. Each instance was chosen uniformly at randomly from a [0 , 100] x [0, 100] E n2 
domain, and the concept was a 5 x 5 square in the middle of the domain. A bag was labeled 
positive if at least one of its instances fell within the square, and negative if none did, as shown 
in Figure 2. The square in the middle contains at least one instance from every positive bag 
and no negative instances. This is a difficult data set because both positive and negative bags 
are drawn from the same distribution. They only differ in a small area of the domain. 

Using regular density (adding up the contribution of every positive bag and subtracting negative 
bags; this is roughly what a supervised learning algorithm such as n~arest neighbor performs), 
we can plot the density surface across the domain. Figure 3(a) shows this surface for the 
data set in Figure 2, and it is clear that finding the peak (a candidate hypothesis) is difficult. 
However, when we plotthe Diverse Density surface (using the noisy-or model) in Figure 3(b), 
it is easy to pick out the global maximum which is within the desired concept. The other 
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(a) Surface using regular density (b) Surface using Diverse Density 

Figure 3: Density surfaces over the example data of Figure 3 

major peaks in Figure 3(b) are the result of a chance concentration of instances from different 
bags. With a bit more bad luck, one of those peaks could have eclipsed the one in the middle. 
However, the chance of this decreases as the number of bags (training examples) increases. 

One remaining issue is how to find the maximum Diverse Density. In general, we are searching 
an arbitrary density landscape and the number of local maxima and size of the search space 
could prohibit any efficient exploration. In this paper, we use gradient ascent with multiple 
starting points. This has worked succesfully in every test case because we know what starting 
points to use. Th'e maximum Diverse Density peak is made of contributions from some set 
of positive points. If we start an ascent from every positive point, one of them is likely to 
be closest to the maximum, contribute the most to it and have a climb directly to it. While 
this heuristic is sensible for maximizing with respect to location, maximizing with respect to 
scaling of feature weights may still lead to local maxima. 

3 Applications of Diverse Density 

By way of benchmarking, we tested the Diverse Density approach on the "musk" data sets 
from [Dietterich et ai., 1997], which were also used in [Auer, 1997]. We also have begun 
investigating two new applications of multiple-instance learning. We describe preliminary 
results on all of these below. The musk data sets contain feature vectors describing the surfaces 
of a variety of low-energy shapes from approximately 100 molecules. Each feature vector 
has 166 dimensions. Approximately half ofthese molecules are known to smell "musky," the 
remainder are very similar molecules that do not smell musky. There are two musk data sets; 
the Musk-l data set is smaller, both in having fewer molecules and many fewer instances per 
molecule. Many (72) of the molecules are shared between the two data sets, but the second 
set includes more instances for the shared molecules. 

We approached the problem as follows: for each run, we held out a randomly selected 
1/10 of the data set as a test set. We computed the maximum Diverse Density on the 
training set by multiple gradient ascents, starting at each positi ve instance. This produces a 
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maximum feature point as well as the best feature weights corresponding to that point. We 
note that typically less than half of the 166 features receive non-zero weighting. We then 
computed a distance threshold that optimized classification performance under leave-one-out 
cross validation within the training set. We used the feature weights and distance threshold to 
classify the examples of the test set; an example was deemed positive if the weighted distance 
from the maximum density point to any of its instances was below the threshold. 

The table below lists the average accuracy of twenty runs, compared with the performance 
of the two principal algorithms reported in [Dietterich et aI., 1997] (i tera ted-discrim 
APR and GFS elim-kde APR), as well as the MULTINST algorithm from [Auer, 1997l. 
We note that the performances reported for i terated-discrim APR involves choosing 
parameters to maximize test set performance and so probably represents an upper bound for 
accuracy on this data set. The MULTINST algorithm assumes that all instances from all 
bags are generated independently. The Diverse Density results, which required no tuning, are 
comparable or better than those ofGFS elim-kde APR and MULTINST. 

Musk Data Set 1 
algorithm accuracy 
iterated-discrim APR 92.4 
GFS elim-kde APR 91.3 
Diverse Density 88.9 
MULTINST 76.7 

Musk Data Set 2 
algorithm 
iterated-discrim APR 
MULTINST 
Di verse Densi ty 
GFS elim-kde APR 

accuracy 
89.2 
84.0 
82.5 
80.4 

We also investigated two new applications of multiple-instance learning. The first of these is 
to learn a simple description of a person from a series of images that are labeled positive if 
they contain the person and negative otherwise. For a positively labeled image we only know 
that the person is somewhere in it, but we do not know where. We sample 54 subimages of 
varying centers and sizes and declare them to be instances in one positive bag since one of 
them contains the person. This is repeated for every positive and negative image. 

We use a very simple representation for the instances. Each subimage is divided into three parts 
which roughly correspond to where the head, torso and legs of the person would be. The three 
dominant colors (one for each subsection) are used to represent the image. Figure 4 shows 
a training set where every bag included two people, yet the algorithm learned a description 
of the person who appears in all the images. This technique is expanded in [Maron and 
LakshmiRatan, 1998] to learn descriptions of natural images and use the learned concept to 
retrieve similar images from a large image database. 

Another new application uses Diverse Density in the stock selection problem. Every month, 
there are stocks that perform well for fundamental reasons and stocks that perform well because 
of flukes; there are many more of the latter, but we are interested in the former. For every 
month, we take the 100 stocks with the highest return and put them in a positive bag, hoping 
that at least one of them did well for fundamental reasons. Negative bags are created from 
the bottom 5 stocks in every month. A stock instance is described by 17 features such as 
momentum, price to fair-value, etc. Grantham, Mayo, Van Otterloo & Co. kindly provided 
us with data on the 600 largest US stocks since 1978. We tested the algorithm through five 
runs of training for ten years, then testing on the next year. In each run, the algorithm returned 
the stock description (location in feature space and a scaling of the features) that maximized 
Diverse Density. The test stocks were then ranked and decilized by distance (in weighted 
feature space) to the max-DD point. Figure 5 shows the average return of every decile. The 
return in the top decile (stocks that are most like the "fundamental stock") is positive and 
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Figure 6: Black bars show Diverse Den
sity's average return on a decile, and the 
white bars show GMO's predictor's return. 

higher than the average return of a GMO predictor. Likewise, the return in the bottom decile 
is negative and below that of a GMO predictor. 

4 Conclusion 

In this paper, we have shown that Diverse Density is a general tool with which to learn from 
Multiple-Instance examples. In addition, we have shown that Multiple-Instance problems 
occur in a wide variety of domains. We attempted to show the various ways in which 
ambiguity can lead to the Multiple-Instance framework: through lack of knowledge in the 
drug discovery .example, through ambiguity of representation in the vision example, and 
through a high degree of noise in the stock example. 
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