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Abstract 

Bayesian methods have been successfully applied to regression and 
classification problems in multi-layer perceptrons. We present a 
novel application of Bayesian techniques to Radial Basis Function 
networks by developing a Gaussian approximation to the posterior 
distribution which, for fixed basis function widths, is analytic in 
the parameters. The setting of regularization constants by cross­
validation is wasteful as only a single optimal parameter estimate 
is retained. We treat this issue by assigning prior distributions to 
these constants, which are then adapted in light of the data under 
a simple re-estimation formula. 

1 Introduction 

Radial Basis Function networks are popular regression and classification tools[lO]. 
For fixed basis function centers, RBFs are linear in their parameters and can there­
fore be trained with simple one shot linear algebra techniques[lO]. The use of 
unsupervised techniques to fix the basis function centers is, however, not generally 
optimal since setting the basis function centers using density estimation on the input 
data alone takes no account of the target values associated with that data. Ideally, 
therefore, we should include the target values in the training procedure[7, 3, 9]. Un­
fortunately, allowing centers to adapt to the training targets leads to the RBF being 
a nonlinear function of its parameters, and training becomes more problematic. 

Most methods that perform supervised training of RBF parameters minimize the 
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training error, or penalized training error in the case of regularized networks[7, 3, 9]. 
The setting of the associated regularization constants is often achieved by compu­
tationally expensive approaches such as cross-validation which search through a set 
of regularization constants chosen a priori. Furthermore, much of the information 
contained in such computation is discarded in favour of keeping only a single regu­
larization constant. A single set of RBF parameters is subsequently found by mini­
mizing the penalized training error with the determined regularization constant. In 
this work, we assign prior distributions over these regularization constants, both for 
the hidden to output weights and the basis function centers. Together with a noise 
model, this defines an ideal Bayesian procedure in which the beliefs expressed in the 
distribution of regularization constants are combined with the information in the 
data to yield a posterior distribution of network parameters[6]. The beauty of this 
approach is that none of the information is discarded, in contrast to cross-validation 
type procedures. Bayesian techniques applied to such non-linear, non-parametric 
models, however, can also be computationally extremely expensive, as predictions 
require averaging over the high-dimensional posterior parameter distribution. One 
approach is to use Markov chain Monte Carlo techniques to draw samples from the 
posterior[8]. A simpler approach is the Laplace approximation which fits a Gaussian 
distribution with mean set to a mode of the posterior, and covariance set to the 
inverse Hessian evaluated at that mode. This can be viewed as a local posterior 
approximation, as the form of the posterior away from the mode does not affect the 
Gaussian fit. A third approach, called ensemble learning, also fits a Gaussian, but is 
based on a less local fit criterion, the Kullback-Leibler divergence[4, 5]. As shown in 
[1], this method can be applied successfully to multi-layer perceptrons, whereby the 
KL divergence is an almost analytic quantity in the adaptable parameters. For fixed 
basis function widths, the KL divergence for RBF networks is completely analytic 
in the adaptable parameters, leading to a relatively fast optimization procedure. 

2 Bayesian Radial Basis Function Networks 

For an N dimensional input vector x, we consider RBFs that compute the linear 
combination of K Gaussian basis functions, 

K 

f(x, m) = L WI exp {-Atllx - ctll2} (1) 
1=1 

where we denote collectivel~ the ce,nters Cl ..• cKl and wei~hts w = w~ ... Wk. by 
the parameter vector m = [c I , ... ,CK,Wl, ... ,WK]. We consIder the basIS functIOn 
widths AI, ... Ak to be fixed although, in principle, they can also be adapted by a 
similar technique to the one presented below. The data set that we wish to regress 
is a set of P input-output pairs D = {xl', yJL, JL = 1 ... Pl. Assuming that the target 
outputs y have been corrupted with additive Gaussian noise of variance (3-I, the 
likelihood of the data is l 

p(Dlm,{3) = exp (-{3ED) jZD, 

where the training error is defined, 

1 p 

ED = '2 L (f(xJL , m) - yJL)2 
1'=1 

To discourage overfitting, we choose a prior regularizing distribution for m 

p(mla) = exp (-Em(m)) jZp 

lIn the following, ZD, Zp and ZF are normalising constants 

(2) 

(3) 

(4) 
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where we take Em(m) = ~m TAm for a matrix A of hyperparameters . More compli­
cated regularization terms, such as those that penalize centers that move away from 
specified points are easily incorporated in our formalism. For expositional clarity, 
we deal here with only the simple case of a diagonal regularizer matrix A = aI. 

The conditional distribution p(mID, a,.8) is then given by 

p(mID,a,.8) = exp(-.8ED(m) - Em(m»/ZF (5) 

We choose to model the hyperparameters a and .8 by Gamma distributions, 

p(a) ex: aa-le-o:/b p(.8) ex: a c - 1e-/3/d , (6) 

where a, b, c, d are chosen constants. This completely specifies the joint posterior, 

p(m,a,.BID) = p(mID,a,.8)p(a)p(.B) . (7) 

A Bayesian prediction for a new test point x is then given by the posterior average 
(f(x, m»)p(In,o:,/3I D). If the centers are fixed, p(wID, a,.8) is Gaussian and com­
puting the posterior average is trivial. However, with adaptive centers,the posterior 
distribution is typically highly complex and computing this average is difficult2 . We 
describe below approaches that approximate the posterior by a simpler distribution 
which can then be used to find the Bayesian predictions and error bars analytically. 

3 Approximating the posterior 

3.1 Laplace's method 

Laplace's method is an approximation to the Bayesian procedure that fits a Gaussian 
to the mode mo of p(m, ID,a,.8) by extremizing the exponent in (5) 

T = ~llmW + .8ED(m) (8) 

with respect to m. The mean of the approximating distribution is then set to the 
mode roo, and the covariance is taken to be the inverse Hessian around roo; this is 
then used to approximately compute the posterior average. This is a local method 
as no account is taken for the fit of the Gaussian away from the mode. 

3.2 Kullback-Leibler method 

The Kullback-Leibler divergence between the posterior p(m, a, .8ID) and an approx­
imating distribution q(m, a,.8) is defined by 

J (p(m,a,.8ID)) 
KL[q] = - q(m,a,.B) In q(m,a,.8) . (9) 

K L[q] is zero only if p and q are identical, and is greater than zero otherwise. Since 
in (5) ZF is unknown, we can compute the KL divergence only up to an additive 
constant, L[q] = KL[q] - InZF. We seek then a posterior approximation of the 
form q(m, a,.8) = Q(m)R(a)S(B) where Q(m) is Gaussian and the distributions R 
and S are determined by minimization of the functional L[q][5]. 

We first consider optimizing L with respect to the mean m and covariance C of 
the Gaussian distribution Q(m) ex: exp {-~(m - m)TC-l(m - m)}. Omitting all 
constant terms and integrating out a and .8, the Q(m) dependency in Lis, 

L[Q(m)] = - J Q(m) [-i3ED(m) - ~Q:llmW -In Q(m)] dm + const. (10) 

2The fixed and adaptive center Bayesian approaches are contrasted more fully in [2]. 
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where 

Q = J aR(a)da, E = J f3S(f3)df3 (11) 

are the mean values of the hyperparameters. For Gaussian basis functions, the 
remaining integration in (10) over Q(m) can be evaluated analytically, giving3 

L[Q(m)] = ~Q {tr(C) + IImW} + E(ED(m»)Q - ~ In(det C) + const. (12) 

where 

1 p ( K K) 
(ED(m))Q = "2 ~ (y~)2 - 2y~ ~ sj + J;1 s~1 

The analytical formulae for 

sj = (wlexp{-'\jllxl'-CIW})Q 

S~, = (WkWj exp{ -,\kllxtL - Ck 112} exp{ -'\l\lx~ - cdI2})Q 

(13) 

(14) 

(15) 
are straightforward to compute, requiring only Gaussian integration[2]. The values 
for C and m can then be found by optimizing (12). 

We now turn to the functional optimisation of (9) with respect to R. Integrating 
out m and f3 leaves, up to a constant, 

L[R] = JR(a){a["~W + tr~C) +t] + [K(~+l) +a-l]lna+lnR(a)}da 

(16) 
As the first two terms in (16) constitute the log of a Gamma distribution (6), the 
functional (16) is optimized by choosing a Gamma distribution for a, 

(17) 

with 

! = IIml12 + !tr(C) + ! 
s 2 2 b' 

K(N + 1) 
r = 2 + a, a=rs. (18) 

The same procedure for S(f3) yields 

S(f3) ex: f3 U - 1 e-/3/v (19) 

with 
P 1 1 

u = - + c, - = (ED(m»)Q + -d' -:e = uv, (20) 
2 v 

where the averaged training error is given by (13). The optimization of the ap­
proximating distribution Q(m)R(a)S(f3) can then be performed using an iterative 
procedure in which we first optimize (12) with respect to m and C for fixed a, 73, 
and then update a and 7J according to the re-estimation formulae (18,20). 

After this iterative procedure has converged, we have an approximating distribution 
of parameters, both for the hidden to output weights and center positions (figure 
l(a»). The actual predictions are then given by the posterior average over this distri­
bution of networks. The model averaging effect inherent in the Bayesian procedure 
produces a final function potentially much more complex than that achievable by a 
single network. 

A significant advantage of our procedure over the Laplace procedure is that we can 
lower bound model the likelihood Inp(Dlmodel) ~ -(L+lnZD+lnZp). Hence, 
decreasing L increases p(Dlmodel). We can use this bound to rank different models, 
leading to principled Bayesian model selection. 

3( ... }Q denotes J Q(m) ... dm 
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Center Fluctuations Widths 

Figure 1: Regressing a surface from 40 noisy training examples. (a) The KL ap­
proximate Bayesian treatment fits 6 basis functions to the data. The posterior 
distribution for the parameters gives rise to a posterior weighted average of a dis­
tribution of the 6 Gaussians. We plot here the posterior standard deviation of the 
centers (center fluctuations) and the mean centers. The widths were fixed a priori 
using Maximum Likelihood. (b) Fixing a basis function on each training point with 
fixed widths. The hidden-output weights were determined by cross-validation of the 
penalised training error. 

4 Relation to non-Bayesian treatments 

One non-Bayesian approach to training RBFs is to minimze the training error (3) 
plus a regularizing term of the form (8) for fixed centers[7, 3, 9]. In figure l(b) 
we fix a center on each training input. For fixed hyperparameters a and (3, the 
optimal hidden-to-output weights can then be found by minimizing (8). To set the 
hyperparameters, we iterate this procedure using cross-validation. This results in a 
single estimate for the parameters mo which is then used for predictions f(x, mo). 
In figure(l), both the Bayesian adaptive center and the fixed center methods have 
similar performance in terms of test error on this problem. However, the parsimo­
nious representiation of the data by the Bayesian adaptive center method may be 
advantageous if interpreting the data is important. 

In principle, in the Bayesian approach, there is no need to carry out a cross­
validation type procedure for the regularization parameters a, {3. After deciding 
on a particular Bayesian model with suitable hyperprior constants (here a, b, c, d), 
our procedure will combine these beliefs about the regularity of the RBF with the 
dataset in a principled manner, returning a-posteriori probabilities for the values of 
the regularization constants. Error bars on the predictions are easily calculated as 
the posterior distribution quantifies our uncertainty in the parameter estimates. 

One way of viewing the connection between the CV and Bayesian approaches, is to 
identify the a-priori choice of CV regularization coefficients ai that one wishes to 
examine as a uniform prior over the set {ad. The posterior regularizer distribution 
is then a delta peak centred at that a* with minimal CV error. This delta peak 
represents a loss of information regarding the performance of all the other networks 
trained with ai :la*. In contrast, in our Bayesian approach we assign a continuous 
prior distribution on a, which is updated according to the evidence in the data. Any 
loss of information then occurs in approximating the resulting posterior distribution. 
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(a) Minimum KL (b) Laplace 
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Figure 2: Minimal KL Gaussian fit, Laplace Gaussian, and a non-Bayesian proce­
dure on regressing with 6 Gaussian basis functions. The training points are labelled 
by crosses and the target function 9 is given by the solid lines. For both (a) and (b), 
the mean prediction is given by the dashed lines, and standard errors are given by 
the dots. (a) Approximate Bayesian solution based on Kullback-Leibler divergence. 
The regularization constant Q and inverse noise level f3 are adapted as described 
in the text. (b) Laplace method based on equation (8). Both Q and f3 are set to 
the mean of the hyperparameter distributions (6). The mean prediction is given 
by averaging over the locally approximated posterior. Note that the error bars are 
somewhat large, suggesting that the local posterior mass has been underestimated. 
(c) The broken line is the Laplace solution without averaging over the posterior, 
showing much greater variation than the averaged prediction in (b). The dashed line 
corresponds to fixing the basis function centers at each data point, and estimating 
the regularization constants a by cross-validation. 

5 Demonstration 

We apply the above outlined Bayesian framework to a simple one-dimensional re­
gression problem. The function to be learned is given by 

(21) 

and is plotted in figure(2). The training patterns are sampled uniformly be­
tween [-4,4] and the output is corrupted with additive Gaussian noise of variance 
a2 = 0.005. The number of basis function is K = 6, giving a reasonably flex­
ible model for this problem. In figure(2), we compare the Bayesian approaches 
(a),(b) to non-Bayesian approaches(c). In this demonstration, the basis function 
widths were chosen by penalised training error minimization and fixed through­
out all experiments. For the Bayesian procedures, we chose hyperprior constants, 
a = 2, b = 1/4, c = 4, d = 50, corresponding to mean values it = 0.5 and E = 200. 
In (c), we plot a more conventional approach using cross-validation to set the reg­
ularization constant. 

A useful feature of the Bayesian approaches lies in the principled theory for the error 
bars. In (c), although we know the test error for each regularization constant in the 
set of constants we choose to examine, we do not know any principled procedure 
for using these values for error bar assessment. 
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6 Conclusions 

We have incorporated Radial Basis FUnctions within a Bayesian framework, arguing 
that the selection of regularization constants by non-Bayesian methods such as 
cross-validation is wasteful of the information contained in our prior beliefs and 
the data set. Our framework encompasses flexible priors such as hard assigning a 
basis function center to each data point or penalizing centers that wander far from 
pre-assigned points. We have developed an approximation to the ideal Bayesian 
procedure by fitting a Gaussian distribution to the posterior based on minimizing 
the Kullback-Leibler divergence. This is an objectively better and more controlled 
approximation to the Bayesian procedure than the Laplace method. FUrthermore, 
the KL divergence is an analytic quantity for fixed basis function widths. This 
framework also includes the automatic adaptation of regularization constants under 
the influence of data and provides a rigorous lower bound on the likelihood of the 
model. 
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