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In most neural network models, synapses are treated as static weights that 
change only on the slow time scales of learning. In fact, however, synapses 
are highly dynamic, and show use-dependent plasticity over a wide range 
of time scales. Moreover, synaptic transmission is an inherently stochastic 
process: a spike arriving at a presynaptic terminal triggers release of a 
vesicle of neurotransmitter from a release site with a probability that can 
be much less than one. Changes in release probability represent one of the 
main mechanisms by which synaptic efficacy is modulated in neural circuits. 
We propose and investigate a simple model for dynamic stochastic synapses 
that can easily be integrated into common models for neural computation. 
We show through computer simulations and rigorous theoretical analysis 
that this model for a dynamic stochastic synapse increases computational 
power in a nontrivial way. Our results may have implications for the process
ing of time-varying signals by both biological and artificial neural networks. 

A synapse 8 carries out computations on spike trains, more precisely on trains of spikes 
from the presynaptic neuron. Each spike from the presynaptic neuron mayor may not 
trigger the release of a neurotransmitter-filled vesicle at the synapse. The probability of a 
vesicle release ranges from about 0.01 to almost 1. Furthermore this release probability is 
known to be strongly "history dependent" [Dobrunz and Stevens, 1997]. A spike causes an 
excitatory or inhibitory potential (EPSP or IPSP, respectively) in the postsynaptic neuron 
only when a vesicle is released. 

A spike train is represented as a sequence 1 of firing times, i.e. as increasing sequences 
of numbers tl < t2 < ... from R+ := {z E R: z ~ O} . For each spike train 1 the output of 
synapse 8 consists of the sequence 8W of those ti E 10n which vesicles are "released" by 
8 , i.e. of those t, E 1 which cause an excitatory or inhibitory postsynaptic potential (EPSP 
or IPSP, respectively). The map 1 -+ 8(1) may be viewed as a stochastic function that is 
computed by synapse S. Alternatively one can characterize the output SW of a synapse 
8 through its release pattern q = qlq2 ... E {R, F}· , where R stands for release and F for 
failure of release. For each t, E 1 one sets q, = R if ti E 8(1) , and qi = F if ti ¢ 8W . 
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1 Basic model 

The central equation in our dynamic synapse model gives the probability PS(ti) that the ith 

spike in a presynaptic spike train t = (tl,"" tk) triggers the release of a vesicle at time ti 
at synapse S, 

(1) 

The release probability is assumed to be nonzero only for t E t, so that releases occur only 
when a spike invades the presynaptic terminal (i.e. the spontaneous release probability is 
assumed to be zero). The functions C(t) ~ 0 and V(t) ~ 0 describe, respectively, the states 
of facilitation and depletion at the synapse at time t . 

The dynamics of facilitation are given by 

C(t) = Co + L c(t - ti) , (2) 
t. <t 

where Co is some parameter ~ 0 that can for example be related to the resting concentration 
of calcium in the synapse. The exponential response function c( s) models the response of 
C(t) to a presynaptic spike that had reached the synapse at time t - s: c(s) = a' e- a/ TC , 

where the positive parameters Te and a give the decay constant and magnitude, respectively, 
of the response. The function C models in an abstract way internal synaptic processes 
underlying presynaptic facilitation, such as the concentration of calcium in the presynaptic 
terminal. The particular exponential form used for c( s) could arise for example if presynaptic 
calcium dynamics were governed by a simple first order process. 

The dynamics of depletion are given by 

V(t) = max( 0, Vo - (3) 
t.: t.<t and t.ES(!) 

for some parameter Vo > O. V(t) depends on the subset of those ti E t with ti < t on which 
vesicles were actually released by the synapse, i.e. ti E SW. The function v(s) models the 
response of V (t) to a preceding release of the same synapse at time t - s ~ t . Analogously 
as for c(s) one may choose for v(s) a function with exponential decay v(s) = e-a/ TV , 

where Tv > 0 is the decay constant. The function V models in an abstract way internal 
synaptic processes that support presynaptic depression, such as depletion of the pool of 
readily releasable vesicles. In a more specific synapse model one could interpret Vo as the 
maximal number of vesicles that can be stored in the readily releasable pool, and V(t) as 
the expected number of vesicles in the readily releasable pool at time t. 

In summary, the model of synaptic dynamics presented here is described by five pa
rameters: Co, Vo, Te, Tv and a. The dynamics of a synaptic computation and its internal 
variables C(t) and V(t) are indicated in Fig. 1. 

For low release probabilities, Eq. 1 can be expanded to first order around r(t) := 
C(t) . V(t) = 0 to give 

(4) 

Similar expressions have been widely used to describe synaptic dynamiCS for mUltiple 
synapses [Magie by, 1987, Markram and Tsodyks, 1996, Varela et al., 1997]. 

In our synapse model, we have assumed a standard exponential form for the de
cay of facilitation and depression (see e.g. [Magleby, 1987, Markram and Tsodyks, 1996, 
Varela et al., 1997, Dobrunz and Stevens, 1997]}. We have further assumed a multiplica
tive interaction between facilitation and depletion. While this form has not been validated 



196 

presynaptic 
spike train 

function C(t) 
(facilitation) 

function V(t) 
(depression) 

" " 

W. Maass and A. M. Zador 

function p(t,) ' [ 
(release 0'-------------- - -

probabilities) 

F FR R FRF F R 
release pattern ---------------

II I I I I I I )' 
t, 

Figure 1: Synaptic computation on a spike train i, together with the temporal dynamics of 
the internal variables C and V of our model. Note that V(t) changes its value only when a 
presynaptic spike causes release. 

at single synapses, in the limit of low release probability (see Eq. 4), it agrees with the 
multiplicative term employed in [Varela et al. , 19971 to describe the dynamics of mUltiple 
synapses. 

The assumption that release at individual release sites of a synapse is binary, i. e. that 
each release site releases 0 or I-but not more than I-vesicle when invaded by a spike, leads 
to the exponential form of Eq. 1 [Dobrunz and Stevens, 19971. We emphasize the formal 
distinction between release site and synapse. A synapse might consist of several release sites 
in parallel, each of which has a dynamics similar to that of the stochastic "synapse model" 
we consider. 

2 Results 

2.1 Different "Weights" for the First and Second Spike in a Train 

We start by investigating the range of different release probabilities ps(td,PS(t2) that a 
synapse S can assume for the first two spikes in a given spike train. These release probabil
ities depend on t2 - tt as well as on the values of the internal parameters Co, Va,re,'TV,O 
of the synapse S. Here we analyze the potential freedom of a synapse to choose values for 
ps(tt} and PS(t2)' We show in Theorem 2.1 that the range of values for the release prob
abilities for the first two spikes is quite large, and that the entire attainable range can be 
reached through through suitable choices of Co and Vo . 

Theorem 2.1 Let (tt, t2) be some arbitrary spike train consisting of two spikes, and let 
PI ,P2 E (0,1) be some arbitrary given numbers with P2 > Pl' (1 - pd. Furthermore assume 
that arbitrary positive values are given for the parameters 0, re, 'TV of a synapse S. Then one 
can always find values for the two parameters Co and Va of the synapse S so that ps(tt) = PI 
and PS(t2) = P2. 

Furthermore the condition P2 > Pt . (1 - Pt) is necessary in a strong sense. If P2 ~ 
Pt · (1 - pt) then no synapse S can achieve ps(td = Pt and PS(t2) = P2 for any spike train 
(tl' t2) and for any values of its parameters Co, Vo, re, 'TV, 0. 

If one associates the current sum of release probabilities of multiple synapses or release 
sites between two neurons u and v with the current value of the "connection strength" wu,v 
between two neurons in a formal neural network model, then the preceding result points 
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Figure 2: The dotted area indicates the range of pairs (Pl,P2) of release probabilities for the 
first and second spike through which a synapse can move (for any given interspike interval) 
by varying its parameters Co and Vo . 

to a significant difference between the dynamics of computations in biological circuits and 
formal neural network models. Whereas in formal neural network models it is commonly 
assumed that the value of a synaptic weight stays fixed during a computation, the release 
probabilities of synapses in biological neural circuits may change on a fast time scale within 
a single computation. 

2.2 Release Patterns for the First Three Spikes 

In this section we examine the variety of release patterns that a synapse can produce for 
spike trains tl, t2, t3, ' " with at least three spikes. We show not only that a synapse can 
make use of different parameter settings to produce 'different release patterns, but also that 
a synapse with a fixed parameter setting can respond quite differently to spike trains with 
different interspike intervals. Hence a synapse can serve as pattern detector for temporal 
patterns in spike trains. 

It turns out that the structure of the triples of release probabilities 
(PS(tl),PS(t2),PS(t3)) that a synapse can assume is substantially more complicated 
than for the first two spikes considered in the previous section. Therefore we focus here 
on the dependence of the most likely release pattern q E {R, FP on the internal synaptic 
parameters and on the interspike intervals II := t2 - fi and 12 := t3 - t2. This dependence 
is in fact quite complex, as indicated in Fig. 3. 

RRR 
RFR FRF FFF 

RRF 

interspike interval IJ interspike interval IJ 

Figure 3: (A, left) Most likely release pattern of a synapse in dependence of the interspike 
intervals It and 12. The synaptic parameters are Co = 1.5, Vo = 0.5, rc = 5, 'TV = 9, 
a = 0.7. (B, right) Release patterns for a synapse with other values of its parameters 
(Co = 0.1, Vo = 1.8, rc = 15, 'TV = 30, a = 1). 
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Fig. 3A shows the most likely release pattern for each given pair of interspike intervals 
(11 ,12 ), given a particular fixed set of synaptic parameters. One can see that a synapse with 
fixed parameter values is likely to respond quite differently to spike trains with different 
interspike intervals. For example even if one just considers spike trains with 11 = 12 one 
moves in Fig. 3A through 3 different release patterns that take their turn in becoming the 
most likely release pattern when II varies. Similarly, if one only considers spike trains with 
a fixed time interval t3 - t1 = II + 12 = ~, but with different positions of the second spike 
within this time interval of length ~, one sees that the most likely release pattern is quite 
sensitive to the position of the second spike within this time interval~. Fig. 3B shows 
that a different set of synaptic parameters gives rise to a completely different assignment of 
release patterns. 

We show in the next Theorem that the boundaries between the zones in these figures 
are "plastic": by changing the values of Co, Vo, Ct the synapse can move the zone for most 
of the release patterns q to any given point (11,12 )' This result provides another example 
for a new type of synaptic plasticity that can no longer be described in terms of a decrease 
or increase of the synaptic "weight". 

Theorem 2.2 Assume that an arbitrary number p E (0,1) and an arbitrary pattern (11 ,12 ) 

of interspike intervals is given. Furthermore assume that arbitrary fixed pOlJitive val;.;.p.s are 
given for the parameters rc and TV of a synapse S. Then for any pattern q E {R, FP except 
RRF, FFR one can assign values to the other parameters Ct, Co, Vo of this-synapse S so that 
the probability of release pattern q for a spike train with interspike intervals 11 ,12 becomes 
larger than p. -

It is shown in the full version oftbis paper [Maass and Zador, 19971 that it is not possible 
to make the release patterns RRF and FFR arbitrarily likely for any given spike train with 
interspike intervals (11 ,12 ) • 

2.3 Computing with Firing Rates 

So far we have considered the effect of short trains of two or three presynaptic spikes on 
synaptic release probability. Our next result (cf. Fig.5) shows that also two longer Poisson 
spike trains that represent the same firing rate can produce quite different numers of synaptic 
releases, depending on the synaptic parameters. To emphasize that this is due to the pattern 
of interspike intervals, and not simply to the number of spikes, we compared the outputs in 
response to two Poisson spike trains A and B with the same number (lO)·of spikes. These 
examples indicate that even in the context of rate coding, synaptic efficacy may not be well 
described in terms of a single scalar parameter w. 

2.4 Burst Detection 

Here we show that the computational power of a spiking (e.g. integrate-and-fire) neuron with 
stochastic dynamic synapses is strictly larger than that of a spiking neuron with traditional 
"static" synapses (cf Lisman, 1997). Let T be a some given time window, and consider the 
computational task of detecting whether at least one of n presynaptic neurons a1, . .. ,an 
fire at least twice during T ("burst detection"). To make this task computationally feasible 
we assume that none of the neurons al, ... ,an fires outside of this time window. 

Theorem 2.3 A spiking neuron v with dynamic stochastic synapses can solve this burst 
detection task (with arbitrarily high reliability). On the other hand no spiking neuron with 
static synapses can solve this task (for any assignment of "weights" to its synapses). 1 

lWe assume here that neuronal transmission delays differ by less than (n - 1) . T), where by 
transmission delay we refer to the temporal delay between the firing of the presynaptic neuron and 
its effect on the postsynaptic target. 



Dynamic Stochastic Synapses as Computational Units 199 

, 
.. •• r ....... ~ ... 11I 

II! 

r. III , 
M » • • • • n 

u , r ... 
u 

Il 1 • • .. '10 • 10 .. 

.. 

, ...... ,....". , 
, i f r , I i I 

, 

I .4 r I I 
l1 11 I 

! I , 
I I i • . M » • d • • . 1 • • 

Figure 4: Release probabilities of two synapses for two Poisson spike trains A and B with 10 
spikes each. The release probabilities for the first synapse are shown on the left hand side, 
and for the second synapse on the right hand side. For both synapses the release probabilities 
for spike train A are shown at the top, and for spike train B at the bottom. The first synapse 
has for spike train A a 22 % higher average release probability, whereas the second synapse 
has for spike train B a 16 % higher average release probability. Note that the fourth spike 
in spike train B has for the first synapse a release probability of nearly zero and so is not 
visible. 

2.5 Translating Interval Coding into Population Coding 

Assume that information is encoded in the length I of the interspike interval between the 
times tl and t2 when a certain neuron v fires, and that different motor responses need to 
be initiated depending on whether I < a or I > a, where a is some given parameter (c.f. 
[Hopfield, 1995]). For that purpose it would be useful to translate the information encoded 
in the interspike interval I into the firing activity of populations of neurons ("population 
coding"). Fig. 5 illustrates a simple mechanism for that task based on dynamic synapses. 
The synaptic parameters are chosen so that facilitation dominates (i.e., Co should be small 
and a large) at synapses between neuron v and the postsynaptic population of neurons. The 
release probability for the first spike is then close to 0, whereas the release probability for 
the second spike is fairly large if I < a and significantly smaller if I is substantially larger 
than a. If the resulting firing activity of the postsynaptic neurons is positively correlated 
with the total number of releases of these synapses, then their population response is also 
positively correlated with the length of the interspike interval I. 

1 

presynaptic spikes 

{ FR • if 1 < a 
FF • if 1> a 

synaptic response 

{ I. if 1 < a 
o • if I> a 

resulting activation of 
postsynaptic neurons 

Figure 5: A mechanism for translating temporal coding into population coding. 
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3 Discussion 

We have explored computational implications of a dynamic stochastic synapse model. Our 
model incorporates several features of biological synapses usually omitted in the connections 
or weights conventionally used in artificial neural network models. Our main result is that a 
neural circuit in which connections are dynamic has fundamentally greater power than one 
in which connections are static. We refer to [Maass and Zador, 1997] for details. Our results 
may have implications for computation in both biological and artificial neural networks, and 
particularly for the processing of signals with interesting temporal structure. 

Several groups have recently proposed a computational role for one form of use
dependent short term synaptic plasticity [Abbott et al., 1997, Tsodyks and Markram, 1997]. 
They showed that, under the experimental conditions tested, synaptic depression (of a form 
analogous to Vet) in our Eq. (3) can implement a form of gain control in which the steady
state synaptic output is independent of the input firing rate over a wide range of firing 
rates. We have adopted a more general approach in which, rather than focussing on a par
ticular role for short term plasticity, we allow the dynamic synapse parameters to vary. This 
approach is analogous to that adopted in the study of artificial neural networks, in which 
few if any constraints are placed on the connections between units. In our more general 
framework, standard neural network tasks such as supervised and unsupervised learning 
can be formulated (see also [Liaw and Berger, 1996]). Indeed, a backpropagation-like gra
dient descent algorithm can be used to adjust the parameters of a network connected by 
dynamic synapses (Zador and Maass, in preparation). The advantages of dynamic synapses 
may become most apparent in the processing of time-varying Signals. 
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