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Abstract 

Time series prediction is one of the major applications of neural net­
works. After a short introduction into the basic theoretical foundations 
we argue that the iterated prediction of a dynamical system may be in­
terpreted as a model of the system dynamics. By means of RBF neural 
networks we describe a modeling approach and extend it to be able to 
model instationary systems. As a practical test for the capabilities of the 
method we investigate the modeling of musical and speech signals and 
demonstrate that the model may be used for synthesis of musical and 
speech signals. 

1 Introduction 

Since the formulation of the reconstruction theorem by Takens [10] it has been clear that 
a nonlinear predictor of a dynamical system may be directly derived from a systems time 
series. The method has been investigated extensively and with good success for the pre­
diction of time series of nonlinear systems. Especially the combination of reconstruction 
techniques and neural networks has shown good results [12]. 

In our work we extend the ideas of predicting nonlinear systems by the more demanding 
task of building system models, which are able to resynthesize the systems time series. In 
the case of chaotic or strange attractors the resynthesis of identical time series is known to 
be impossible. However, the modeling of the underlying attractor leads to the possibility 
to resynthesis time series which are consistent with the system dynamics. Moreover, the 
models may be used for the analysis of the system dynamics, for example the estimation 
of the Lyapunov exponents [6]. In the following we investigate the modeling of music and 
speech signals, where the system dynamics are known to be instationary. Therefore, we 
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develop an extension of the modeling approach, such that we are able to handle instationary 
systems. 

In the following, we first give a short review concerning the state space reconstruction from 
time series by delay coordinate vectors, a method that has been introduced by Takens [10] 
and later extended by Sauer et al. [9]. Then we explain the structure of the neural net­
works we used in the experiments and the enhancements necessary to be able to model 
instationary dynamics. As an example we apply the neural models to a saxophone tone 
and a speech signal and demonstrate that the signals may be resynthesized using the neural 
models. Furthermore, we discuss some of the problems and outline further developments 
of the application. 

2 Reconstructing attractors 

Assume an n-dimensional dynamical system f(-) evolving on an attractor A. A has frac­
tal dimension d, which often is considerably smaller then n. The system state z is ob­
served through a sequence of measurements h(Z), resulting in a time series of measure­
ments Yt = h(z(t)). Under weak assumptions concerning h(-) and fe) the fractal embed­
ding theorem[9] ensures that, for D > 2d, the set of all delayed coordinate vectors 

(1) 

with an arbitrary delay time T, forms an embedding of A in the D-dimensional recon­
struction space. We call the minimal D, which yields an embedding of A, the embedding 
dimension De. Because an embedding preserves characteristic features of A, especially it 
is one to one, it may be employed for building a system model. For this purpose the recon­
struction of the attractor is used to uniquely identify the systems state thereby establishing 
the possibility of uniquely predicting the systems evolution. The prediction function may 
be represented by a hyperplane over the attractor in an (D + 1) dimensional space. By 
iterating this prediction function we obtain a vector valued system model which, however, 
is valid only at the respective attractor. 
For the reconstruction of instationary systems dynamics we confine ourselves to the case 
of slowly varying parameters and model the in stationary system using a sequence of attrac­
tors. 

3 RBF neural networks 

There are different topologies of neural networks that may be employed for time series 
modeling. In our investigation we used radial basis function networks which have shown 
considerably better scaling properties, when increasing the number of hidden units, than 
networks with sigmoid activation function [8]. As proposed by Verley sen et. al [11] we 
initialize the network using a vector quantization procedure and then apply backpropaga­
tion training to finally tune the network parameters. The tuning of the parameters yields 
an improvement factor of about ten in prediction error compared to the standard RBF net­
work approach [8, 3] . Compared to earlier results [7] the normalization of the hidden layer 
activations yields a small improvement in the stability of the models. 

The resulting network function for m-dimensional vector valued output is of the form 

_ exp (_(C'(7-X)2) _ 
N(x) = "w· .I + b 7 JZ:::iexp(-(Cl(7~X)2) , 

(2) 
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Fig. I: Input/Output structure of the neural model. 
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where (T J represents the standard deviation of the Gaussian, the input x and the centers 

c are n-dimensional vectors and band Wj are m-dimensional parameters of the network. 
Networks of the form eq. (2) with a finite number of hidden units are able to approximate 
arbitrary closely all continuous mappings Rn -+ Rm [4]. This universal approximation 
property is the foundation of using neural networks for time series modeling, where we 
denote them as neural models. In the context of the previous section the neural models are 
approximating the systems prediction function. 

To be able to represent instationary dynamics, we extend the network according to figure 1 
to have an additional input, that enables the control of the actual mapping 

(3) 

This model is close to the Hidden Control Neural Network described in [2]. From the uni­
versal approximation properties of the RBF-networks stated above it follows, that eq. (3) 
with appropriate control sequence k( i) is able to approximate any sequence of functions. 
In the context of time series prediction the value i represents the actual sample time. The 
control sequence may be optimized during training, as described in [2], The optimization 
of k( i) requires prohibitively large computational power if the number of different control 
values, the domain of k is large. However, as long as the systems instationarity is described 
by a smooth function of time, we argue that it is possible to select k( i) to be a fixed linear 
function of i. With the preselected k(i) the training of the network adapts the parameters 
tj and (Ttj such that the model evolution closely follows the systems instationarity. 

4 Neural models 

As is shown in figure I we use the delayed coordinate vectors and a selected control se­
quence to train the network to predict the sequence of the following T time samples. The 
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vector valued prediction avoids the need for a further interpolation of the predicted sam­
ples. Otherwise, an interpolation would be necessary to obtain the original sample fre­
quency, but, because the Nyquist frequency is not regarded in choosing T, is not straight­
forward to achieve. 

After training we initialize the network input with the first input vector (X'o, k(O)) of the 
time series and iterate the network function shifting the network input and using the latest 
output unit to complete the new input. The control input may be copied from the training 
phase to resynthesize the training signal or may be varied to emulate another sequence of 
system dynamics. 

The question that has to be posed in this context is concerned with the stability of the 
model. Due to the prediction error of the model the iteration will soon leave the recon­
structed attractor. Because there exists no training data from the neighborhood of the at­
tractor the minimization of the prediction error of the network does not guaranty the sta­
bility of the model [5). Nevertheless, as we will see in the examples, the neural models are 
stable for at least some parameters D and T. 
Due to the high density of training data the method for stabilizing dynamical models pre­
sented in [5) is difficult to apply in our situation. Another approach to increase the model 
stability is to lower the gradient of the prediction function for the directions normal to the 
attractor. This may be obtained by disturbing the network input during training with a 
small noise level. While conceptually straightforward, we found that this method is only 
partly successful. While the resulting prediction function is smoother in the neighborhood 
of the attractor, the prediction error for training with noise is considerably higher as ex­
pected from the noise free results, such that the overall effect often is negative. To circum­
vent the problems of training with noise further investigations will consider a optimization 
function with regularization that directly penalizes high derivatives of the network with 
respect to the input units [1) . The stability of the models is a major subject of further re­
search. 

5 Practical results 

We have applied our method to two acoustic time series, a single saxophone tone, consist­
ing of 16000 samples sampled at 32kHz and a speech signal of the word manna l . The latter 
time series consists of 23000 samples with a sampling rate of 44.1kHz. Both time series 
have been normalized to stay within the interval [-1, 1]. The estimation of the dimension 
of the underlying attractors yields a dimension of about 2-3 in both cases. 

We chose the control input k(i) to be linear increasing from -0.8 to 0.8. Stable models 
we found for both time series using D > 5. Namely for the parameter T we observed 
considerable impact on the model quality. While smaller T results in better one step ahead 
prediction, the iterated model often becomes unstable. This might be explained by the 
decrease in variation within the prediction hyperplane, that has to be learned. For small T 
the model tends to become linear and does not capture the nonlinear characteristics of the 
system. Therefore the iteration of those models failed . 
To large values of T results in an insufficient one step ahead prediction error, which pushes 
the model far away from the attractor also producing unstable behavior. 

'The name of our parallel computer 
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Fig. 2: Synthesized saxophone signal and power spectrum estimation for the original 
(solid) and synthesized (dashed) signal. 
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Fig. 3: Varying the synthesized tone by varying the control input sequence. 

5.1 Modeling a saxophone 

In the following we consider the results for the saxophone model. The model we present 
consists of 10 input units, 200 hidden units and 5 output units and was trained with addi­
tional Gaussian noise at the input. The standard deviation of the noise is 0.0005 and the 
RMS training error obtained is 0.005. The resulting saxophone model is able to resyn­
thesize a signal which is nearly indistinguishable from the original one. The resynthesized 
time series is shown in figure 2. The time series follows the original one with a small phase 
shift, which stems from a small difference in the onset of the model. Also in figure 2 the 
power spectrum of the saxophone signal and the neural model is shown. From the spec­
trum we see the close resemblance of the sound. 

One major demand for the practical application of the proposed musical instrument mod­
els is the possibility to control the synthesized sound. At the present state there exists only 
one control input to the model. Nevertheless, it is interesting to investigate the effect of 
varying the control input of the model. We tried different control input sequences to syn­
thesize saxophone tones . It turns out that the model reinains stable such that we are able to 
control the envelope of the sound. An example of a tone with increased duration is shown 
in figure 3. In this example the control input first follows the trained version, then remains 
constant to produce a longer duration of the tone and then increases to reproduce the decay 
of the tone from the trained time series. 
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Fig. 4: Original and synthesized signal of the word manna. 

5.2 Modeling a speech signal 

For modeling the time series of the spoken word manna we used a similar network com­
pared to the saxophone model. Due to the increased instationarity in the signal we needed 
an increased number of RBF units in the network. The best results up to now has been 
obtained with a network of 400 hidden units , delay time T = 8, output dimension 8 and 
input dimension 11. 

In figure 4 we show the original and the resynthesized signal. The quality of the model is 
not as high as in the case of the saxophone_ Nevertheless, the word is quite understand­
able. From the figure we see, that the main problems stem from the transitions between 
consecutive phonemes. These transitions are rather quick in time and, therefore, there ex­
ists only a small amount of data describing the dynamics of the transitions. We assume that 
more training examples of the same word will cure the problem. However, it will probably 
require a well trained speaker to reproduce the dynamics in speaking the same word twice_ 

6 Further developments 

There are two practical applications that directly follow from the presented results_ The 
first one is to synthesize music signals. To consider musicians demands, we need to en­
hance the control of the synthesized signals. Therefore, in the future we will try to enlarge 
the models, incorporating different flavors of sound into the same model and adding addi­
tional control inputs. Especially we plan to build models for different volume and pitch. 
As a second application we will further investigate the possibilities for using the neural 
models as a speech synthesizer. An interesting topic of further research would be the ex­
tension of the model with an intonation control input that incorporates the possibility to 
synthesize different intonations of the same word from one model. 

7 Summary 

The article describes a methodology to build instationary models from time series of dy­
namical systems. We give theoretical arguments for the universality of the models and 
discuss some of the restrictions and actual problems. As practical test for the method we 
apply the models. to the demanding task of the synthesis of musical and speech signals. It is 
demonstrated that the models are capable to resynthesize the trained signals. At the present 
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state the envelope and duration of the synthesized signals may be controlled. Intended fur­
ther developments have been shortly described . 
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