
One-unit Learning Rules for
Independent Component Analysis

Aapo Hyvarinen and Erkki Oja
Helsinki University of Technology

Laboratory of Computer and Information Science
Rakentajanaukio 2 C, FIN-02150 Espoo, Finland

email: {Aapo.Hyvarinen.Erkki.Oja}(Qhut.fi

Abstract

Neural one-unit learning rules for the problem of Independent Com
ponent Analysis (ICA) and blind source separation are introduced.
In these new algorithms, every ICA neuron develops into a sepa
rator that finds one of the independent components. The learning
rules use very simple constrained Hebbianjanti-Hebbian learning
in which decorrelating feedback may be added. To speed up the
convergence of these stochastic gradient descent rules, a novel com
putationally efficient fixed-point algorithm is introduced.

1 Introduction

Independent Component Analysis (ICA) (Comon, 1994; Jutten and Herault, 1991)
is a signal processing technique whose goal is to express a set of random vari
ables as linear combinations of statistically independent component variables. The
main applications of ICA are in blind source separation, feature extraction, and
blind deconvolution. In the simplest form of ICA (Comon, 1994), we observe m
scalar random variables Xl, ... , Xm which are assumed to be linear combinations of
n unknown components 81, ... 8 n that are zero-mean and mutually statistically inde-
pendent. In addition, we must assume n ~ m. If we arrange the observed variables
Xi into a vector x = (Xl,X2, ... ,xm)T and the component variables 8j into a vector
s, the linear relationship can be expressed as

x=As (1)

Here, A is an unknown m x n matrix of full rank, called the mixing matrix. Noise
may also be added to the model, but it is omitted here for simplicity. The basic

One-unit Learning Rules for Independent Component Analysis 481

problem of ICA is then to estimate (separate) the realizations of the original inde
pendent components Sj, or a subset of them, using only the mixtures Xi. This is
roughly equivalent to estimating the rows, or a subset of the rows, of the pseudoin
verse of the mixing matrix A . The fundamental restriction of the model is that
we can only estimate non-Gaussian independent components, or ICs (except if just
one of the ICs is Gaussian). Moreover, the ICs and the columns of A can only be
estimated up to a multiplicative constant, because any constant multiplying an IC
in eq. (1) could be cancelled by dividing the corresponding column of the mixing
matrix A by the same constant. For mathematical convenience, we define here that
the ICs Sj have unit variance. This makes the (non-Gaussian) ICs unique, up to
their signs. Note the assumption of zero mean of the ICs is in fact no restriction, as
this can always be accomplished by subtracting the mean from the random vector
x. Note also that no order is defined between the lCs.

In blind source separation (Jutten and Herault, 1991), the observed values of x
correspond to a realization of an m-dimensional discrete-time signal x(t), t = 1,2,
Then the components Sj(t) are called source signals. The source signals are usually
original, uncorrupted signals or noise sources. Another application of ICA is feature
extraction (Bell and Sejnowski, 1996; Hurri et al., 1996), where the columns of the
mixing matrix A define features, and the Sj signal the presence and the amplitude
of a feature. A closely related problem is blind deconvolution, in which a convolved
version x(t) of a scalar LLd. signal s(t) is observed. The goal is then to recover the
original signal s(t) without knowing the convolution kernel (Donoho, 1981). This
problem can be represented in a way similar to eq. (1), replacing the matrix A by
a filter.

The current neural algorithms for Independent Component Analysis, e.g. (Bell and
Sejnowski, 1995; Cardoso and Laheld, 1996; Jutten and Herault, 1991; Karhunen
et al., 1997; Oja, 1995) try to estimate simultaneously all the components. This is
often not necessary, nor feasible, and it is often desired to estimate only a subset of
the ICs. This is the starting point of our paper. We introduce learning rules for a
single neuron, by which the neuron learns to estimate one of the ICs. A network of
several such neurons can then estimate several (1 to n) ICs. Both learning rules for
the 'raw' data (Section 3) and for whitened data (Section 4) are introduced. If the
data is whitened, the convergence is speeded up, and some interesting simplifications
and approximations are made possible. Feedback mechanisms (Section 5) are also
mentioned. Finally, we introduce a novel approach for performing the computations
needed in the ICA learning rules, which uses a very simple, yet highly efficient, fixed
point iteration scheme (Section 6). An important generalization of our learning rules
is discussed in Section 7, and an illustrative experiment is shown in Section 8.

2 Using Kurtosis for leA Estimation

We begin by introducing the basic mathematical framework of ICA. Most sug
gested solutions for ICA use the fourth-order cumulant or kurtosis of the signals,
defined for a zero-mean random variable vas kurt(v) = E{v4 } - 3(E{V2})2. For a
Gaussian random variable, kurtosis is zero. Therefore, random variables of positive
kurtosis are sometimes called super-Gaussian, and variables of negative kurtosis
sub-Gaussian. Note that for two independent random variables VI and V2 and for a
scalar 0:, it holds kurt(vi + V2) = kurt(vJ) + kurt(v2) and kurt(o:vd = 0:4 kurt(vd·

482 A. Hyviirinen and E. Oja

Let us search for a linear combination of the observations Xi, say, w T x, such that
it has maximal or minimal kurtosis. Obviously, this is meaningful only if w is
somehow bounded; let us assume that the variance of the linear combination is
constant: E{(wTx)2} = 1. Using the mixing matrix A in eq. (1), let us define
z = ATw. Then also IIzl12 = w T A ATw = w T E{xxT}w = E{(WTx)2} = 1.
Using eq. (1) and the properties of the kurtosis, we have

n

kurt(wT x) = kurt(wT As) = kurt(zT s) = L zJ kurt(sj) (2)
j=1

Under the constraint E{(wT x)2} = IIzll2 = 1, the function in (2) has a number of
local minima and maxima. To make the argument clearer, let us assume for the
moment that the mixture contains at least one Ie whose kurtosis is negative, and
at least one whose kurtosis is positive. Then, as may be obvious, and was rigorously
proven by Delfosse and Loubaton (1995), the extremal points of (2) are obtained
when all the components Zj of z are zero except one component which equals ±1.
In particular, the function in (2) is maximized (resp. minimized) exactly when the
linear combination w T x = zT S equals, up to the sign, one of the les Sj of positive
(resp. negative) kurtosis. Thus, finding the extrema of kurtosis of w T x enables
estimation of the independent components. Equation (2) also shows that Gaussian
components, or other components whose kurtosis is zero, cannot be estimated by
this method.

To actually minimize or maximize kurt(wT x), a neural algorithm based on gradient
descent or ascent can be used. Then w is interpreted as the weight vector of a neuron
with input vector x and linear output w T x. The objective function can be simplified
because of the constraint E{ (wT X)2} = 1: it holds kurt(wT x) = E{ (wT x)4} - 3.
The constraint E{(wT x)2} = 1 itself can be taken into account by a penalty term.
The final objective function is then of the form

(3)

where a, (3 > 0 are arbitrary scaling constants, and F is a suitable penalty function.
Our basic leA learning rules are stochastic gradient descents or ascents for an
objective function of this form. In the next two sections, we present learning rules
resulting from adequate choices of the penalty function F . Preprocessing of the
data (whitening) is also used to simplify J in Section 4. An alternative method for
finding the extrema of kurtosis is the fixed-point algorithm; see Section 6.

3 Basic One-Unit leA Learning Rules

In this section, we introduce learning rules for a single neural unit. These basic
learning rules require no preprocessing of the data, except that the data must be
made zero-mean. Our learning rules are divided into two categories. As explained in
Section 2, the learning rules either minimize the kurtosis of the output to separate
les of negative kurtosis, or maximize it for components of positive kurtosis.

Let us assume that we observe a sample sequence x(t) of a vector x that is a
linear combination of independent components 81, ... , 8 n according to eq. (1). For
separating one of the les of negative kurtosis, we use the following learning rule for

One-unit Learning Rules for Independent Component Analysis 483

the weight vector w of a neuron:

Aw(t) <X x(t)g-(w(t? x(t)) (4)

Here, the non-linear learning function g- is a simple polynomial: g-(u) = au - bu3

with arbitrary scaling constants a, b > O. This learning rule is clearly a stochastic
gradient descent for a function of the form (3), with F(u) = -u. To separate an IC
of positive kurtosis, we use the following learning rule:

Aw(t) <X x(t)g!(t) (w(t? x(t)) (5)

where the learning function g!(t) is defined as follows: g~(u)
-au(w(t)TCw(t))2 + bu3 where C is the covariance matrix of x(t), i.e. C
E{x(t)X(t)T}, and a, b > a are arbitrary constants. This learning rule is a stochas
tic gradient ascent for a function of the form (3), with F(u) = -u2. Note that
w(t)TCw(t) in g+ might also be replaced by (E{(w(t)Tx(t))2})2 or by IIw(t)114 to
enable a simpler implementation.

It can be proven (Hyvarinen and Oja, 1996b) that using the learning rules (4) and
(5), the linear output converges to CSj(t) where Sj(t) is one of the ICs, and C is a
scalar constant. This multiplication of the source signal by the constant c is in fact
not a restriction, as the variance and the sign of the sources cannot be estimated.
The only condition for convergence is that one of the ICs must be of negative (resp.
positive) kurtosis, when learning rule (4) (resp. learning rule (5)) is used. Thus
we can say that the neuron learns to separate (estimate) one of the independent
components. It is also possible to combine these two learning rules into a single rule
that separates an IC of any kurtosis; see (Hyvarinen and Oja, 1996b).

4 One-Unit ICA Learning Rules for Whitened Data

Whitening, also called sphering, is a very useful preprocessing technique. It speeds
up the convergence considerably, makes the learning more stable numerically, and
allows some interesting modifications of the learning rules. Whitening means that
the observed vector x is linearly transformed to a vector v = Ux such that its
elements Vi are mutually uncorrelated and all have unit variance (Comon, 1994).
Thus the correlation matrix of v equals unity: E{ vvT} = I. This transformation is
always possible and can be accomplished by classical Principal Component Analysis.
At the same time, the dimensionality of the data should be reduced so that the
dimension of the transformed data vector v equals n, the number of independent
components. This also has the effect of reducing noise.

Let us thus suppose that the observed signal vet) is whitened (sphered). Then, in
order to separate one of the components of negative kurtosis, we can modify the
learning rule (4) so as to get the following learning rule for the weight vector w:

Aw(t) <X v(t)g- (w(t? vet)) - wet) (6)

Here, the function g- is the same polynomial as above: g-(u) = au - bu3 with
a > 1 and b > O. This modification is valid because we now have Ev(wT v) = w
and thus we can add +w(t) in the linear part of g- and subtract wet) explicitly
afterwards. The modification is useful because it allows us to approximate g- with

484 A. Hyviirinen and E. Oja

the 'tanh' function, as w(t)T vet) then stays in the range where this approximation
is valid. Thus we get what is perhaps the simplest possible stable Hebbian learning
rule for a nonlinear Perceptron.

To separate one of the components of positive kurtosis, rule (5) simplifies to:

dw(t) <X bv(t) (w(t)T v(t))3 - allw(t)114w (t) . (7)

5 Multi-Unit ICA Learning Rules

If estimation of several independent components is desired, it is possible to construct
a neural network by combining N (1 ~ N ~ n) neurons that learn according to
the learning rules given above, and adding a feedback term to each of those learning
rules. A discussion of such networks can be found in (Hyv~rinen and Oja, 1996b) .

6 Fixed-Point Algorithm for ICA

The advantage of neural on-line learning rules like those introduced above is that
the inputs vet) can be used in the algorithm at once, thus enabling faster adaptation
in a non-stationary environment. A resulting trade-off, however, is that the conver
gence is slow, and depends on a good choice of the learning rate sequence, i.e. the
step size at each iteration. A bad choice of the learning rate can, in practice, destroy
convergence. Therefore, some ways to make the learning radically faster and more
reliable may be needed. The fixed-point iteration algorithms are such an alterna
tive. Based on the learning rules introduced above, we introduce here a fixed-point
algorithm, whose convergence is proven and analyzed in detail in (Hyv~rinen and
Oja, 1997). For simplicity, we only consider the case of whitened data here.

Consider the general neural learning rule trying to find the extrema of kurtosis.
In a fixed point of such a learning rule, the sum of the gradient of kurtosis and
the penalty term must equal zero: E{v(wT v)3} - 311wll2w + f(lIwI1 2)w = 0. The
solutions of this equation must satisfy

(8)

Actually, because the norm of w is irrelevant, it is the direction of the right hand
side that is important. Therefore the scalar in eq. (8) is not significant and its effect
can be replaced by explicit normalization.

Assume now that we have collected a sample of the random vector v , which is a
whitened (or sphered) version of the vector x in eq. (1). Using (8), we obtain the
following fixed-point algorithm for leA:

1. Take a random initial vector w(o) of norm 1. Let k = 1.

2. Let w(k) = E{v(w(k - I)T v)3} - 3w(k - 1) . The expectation can be
estimated using a large sample of v vectors (say, 1,000 points).

3. Divide w(k) by its norm.

4. If IW(k)Tw(k - 1)1 is not close enough to 1, let k = k + 1 and go back
to step 2. Otherwise, output the vector w(k).

One-unit Learning Rules for Independent Component Analysis 485

The final vector w* = limk w(k) given by the algorithm separates one of the non
Gaussian les in the sense that w*T v equals one of the les Sj. No distinction
between components of positive or negative kurtosis is needed here. A remarkable
property of our algorithm is that a very small number of iterations, usually 5-10,
seems to be enough to obtain the maximal accuracy allowed by the sample data.
This is due to the fact that the convergence of the fixed point algorithm is in fact
cubic, as shown in (Hyv:trinen and Oja, 1997).

To estimate N les, we run this algorithm N times. To ensure that we estimate each
time a different Ie, we only need to add a simple projection inside the loop, which
forces the solution vector w(k) to be orthogonal to the previously found solutions.
This is possible because the desired weight vectors are orthonormal for whitened
data (Hyv:trinen and Oja, 1996bj Karhunen et al., 1997). Symmetric methods of
orthogonalization may also be used (Hyv:trinen, 1997).

This fixed-point algorithm has several advantages when compared to other suggested
leA methods. First, the convergence of our algorithm is cubic. This means very fast
convergence and is rather unique among the leA algorithms. Second, contrary to
gradient-based algorithms, there is no learning rate or other adjustable parameters
in the algorithm, which makes it easy to use and more reliable. Third, components
of both positive and negative kurtosis can be directly estimated by the same fixed
point algorithm.

7 Generalizations of Kurtosis

In the learning rules introduced above, we used kurtosis as an optimization criterion
for leA estimation. This approach can be generalized to a large class of such
optimizaton criteria, called contrast functions. For the case of on-line learning
rules, this approach is developed in (Hyv:trinen and Oja, 1996a), in which it is
shown that the function 9 in the learning rules in section 4 can be, in fact, replaced
by practically any non-linear function (provided that w is normalized properly).
Whether one must use Hebbian or anti-Hebbian learning is then determined by the
sign of certain 'non-polynomial cumulants'. The utility of such a generalization is
that one can then choose the non-linearity according to some statistical optimality
criteria, such as robustness against outliers.

The fixed-point algorithm may also be generalized for an arbitrary non-linearity, say
g. Step 2 in the fixed-point algorithm then becomes (for whitened data) (Hyv:trinen,
1997): w(k) = E{vg(w(k -l)Tv)} - E{g'(w(k -l)Tv)}w(k -1).

8 Experiments

A visually appealing way of demonstrating how leA algorithms work is to use
them to separate images from their linear mixtures. On the left in Fig. 1, four
superimposed mixtures of 4 unknown images are depicted. Defining the j-th Ie
Sj to be the gray-level value of the j-th image in a given position, and scanning
the 4 images simultaneously pixel by pixel, we can use the leA model and recover
the original images. For example, we ran the fixed-point algorithm four times,
estimating the four images shown on the right in Fig. 1. The algorithm needed on
the average 7 iterations for each Ie.

486 A. Hyviirinen and E. Oja

Figure 1: Three photographs of natural scenes and a noise image were linearly
mixed to illustrate our algorithms. The mixtures are depicted on the left. On the
right, the images recovered by the fixed-point algorithm are shown.

References
Bell, A. and Sejnowski, T. (1995). An information-maximization approach to blind

separation and blind deconvolution. Neural Computation, 7:1129-1159.
Bell, A. and Sejnowski, T. J . (1996). Edges are the independent components of natural

scenes. In NIPS *96, Denver, Colorado.
Cardoso, J .-F. and Laheld, B. H. (1996) . Equivariant adaptive source separation. IEEE

Trans. on Signal Processing. 44(12).

Comon, P. (1994). Independent component analysis - a new concept? Signal Processing,
36:287-314.

Delfosse, N. and Loubaton, P. (1995). Adaptive blind separation of independent sources:
a deflation approach. Signal Processing, 45:59- 83 .

Donoho, D. (1981) . On minimum entropy deconvolution. In Applied Time Series Anal
ysis II. Academic Press.

Hurri, J., Hyv:irinen, A., Karhunen, J., and Oja, E. (1996). Image feature extraction
using independent component analysis. In Proc. NORSIG'96, Espoo, Finland.

Hyv:irinen, A. (1997). A family of fixed-point algorithms for independent component
analysis. In Pmc. ICASSP'9'1, Munich, Germany.

Hyv:irinen, A. and Oja, E. (1996a) . Independent component analysis by general non
linear hebbian-like learning rules. Technical Report A41, Helsinki University of Tech
nology, Laboratory of Computer and Information Science.

Hyv:irinen, A. and Oja, E. (1996b). Simple neuron models for independent component
analysis. Technical Report A37, Helsinki University of Technology, Laboratory of
Computer and Information Science.

Hyv:irinen, A. and Oja, E. (1997). A fast fixed-point algorithm for independent compo
nent analysis. Neural Computation. To appear.

Jutten, C. and Herault, J. (1991). Blind separation of sources, part I: An adaptive
algorithm based on neuromimetic architecture. Signal Processing, 24:1-10.

Karhunen, J., Oja, E., Wang, L., Vigario, R., and Joutsensalo, J . (1997). A class of neu
ral networks for independent component analysis. IEEE Trans. on Neural Networks.
To appear.

Oja, E. (1995). The nonlinear PCA learning rule and signal separation - mathematical
analysis. Technical Report A 26, Helsinki University of Technology, Laboratory of
Computer and Information Science. Submitted to a journal.

