
ARC-LH: A New Adaptive Resampling
Algorithm for Improving ANN Classifiers

Friedrich Leisch
Friedrich.Leisch@ci.tuwien.ac.at

Kurt Hornik
Kurt.Hornik@ci.tuwien.ac.at

Institut fiir Statistik und Wahrscheinlichkeitstheorie
Technische UniversWit Wien

A-I040 Wien, Austria

Abstract

We introduce arc-Ih, a new algorithm for improvement of ANN clas
sifier performance, which measures the importance of patterns by
aggregated network output errors. On several artificial benchmark
problems, this algorithm compares favorably with other resample
and combine techniques.

1 Introduction

The training of artificial neural networks (ANNs) is usually a stochastic and unsta
ble process. As the weights of the network are initialized at random and training
patterns are presented in random order, ANNs trained on the same data will typ
ically be different in value and performance. In addition, small changes in the
training set can lead to two completely different trained networks with different
performance even if the nets had the same initial weights.

Roughly speaking, ANNs have a low bias because of their approximation capabili
ties, but a rather high variance because of the instability. Recently, several resample
and combine techniques for improving ANN performance have been proposed. In
this paper we introduce an new arcing ("~aptive resample and £ombine") method
called arc-Ih. Contrary to the arc-fs method by Freund & Schapire (1995), which
uses misclassification rates for adapting the resampling probabilities, arc-Ih uses the
aggregated network output error. The performance of arc-Ih is compared with other
techniques on several popular artificial benchmark problems.

ARC-Uf: A New Adaptive Resampling Algorithm/or ANN Classifiers 523

2 Bias-Variance Decomposition of 0-1 Loss

Consider the task of classifying a random vector e taking values in X into one of c
classes G1 , ... , Ge , and let g(.) be a classification function mapping the input space
on the finite set {I, ... , c}.

The classification task is to find an optimal function g minimizing the risk

Rg = IELg(e) = l Lg(x) dF(x) (1)

where F denotes the (typically unknown) distribution function of e, and L is a
loss function. In this paper, we consider 0-1 loss only, i.e., the loss is 1 for all
misclassified patterns and zero otherwise.

It is well known that the optimal classifier, i.e., the classifier with minimum risk, is
the Bayes classifier g* assigning to each input x the class with maximum posterior
probability IP(Gnlx) . These posterior probabilities are typically unknown, hence
the Bayes classifier cannot be used directly. Note that Rg* = 0 for disjoint classes
and Rg* > 0 otherwise.

Let X N = {xt, ... ,xN} be a set of independent input vectors for which the true
class is known, available for training the classifier. Further, let g X N (.) denote a
classifier trained using set X N. The risk Rg x N ~ Rg* of classifier g x N is a random
variable depending on the training sample X N. In the case of ANN classifiers it
also depends on the network training, i.e., even for fixed X N the performance of a
trained ANN is a random variable depending on the initialization of weights and
the (often random) presentation of the patterns [xn l during training.

Following Breiman (1996a) we decompose the risk of a classifier into the (minimum
possible) Bayes error, a systematic bias term of the model class and the variance of
the classifier within its model class. We call a classifier model unbiased for input x
if, over replications of all possible training sets X N of size N, network initializations
and pattern presentations, g picks the correct class more often than any other class.
Let U = U(g) denote the set of all x E X where g is unbiased; and B = B(g) = X\U
the set of all points where g is biased. The risk of classifier g can be decomposed as

Rg = Rg* + Bias(g) + Var(g)

where Rg* is the risk of the Bayes classifier,

Bias(g)

Var(g)

Rag - Rag*

Rug - Rug*

(2)

and Ra and Ru denote the risk on set Band U, respectively, i.e., the integration in
Equation 1 is over B or U instead of X, repectively.

A simpler bias-variance decomposition has been proposed by Kong & Dietterich
(1995):

Bias(g)

Var(g)

IP{B}

Rg - Bias(g)

524 F. LeischandK. Hornik

The size of the bias set is seen as the bias of the model (i.e., the error the model
class "typically" makes) . The variance is simply the difference between the actual
risk and this bias term. This decompostion yields negative variance if the current
classifier performs better than the average classifier.

In both decompositions, the bias gives the systematic risk of the model, whereas
the variance measures how good the current realization is compared to the best
possible realization of the model. Neural networks are very powerful but rather
unstable approximators, hence their bias should be low, but the variance may be
high.

3 Resample and Combine

Suppose we had k independent training sets X N1 , .. . , X Nk and corresponding clas
sifiers 91' . .. , 9k trained using these sets, respectively. We can then combine these
single classifiers into ajoint voting classifier 9~ by assigning to each input x the class
the majority of the 9j votes for . If the 9j have low bias, then 9~ should have low
bias, too. If the model is unbiased for an input x, then the variance of 9~ vanishes
as k -+ 00 , and 9 v = limk --+ oo 9k is optimal for x. Hence, by resampling training sets
from the original training set and combining the resulting classifiers into a voting
classifier it might be possible to reduce the high variance of unstable classification
algorithms.

Training sets ANN classifiers

X N1 t::- 91

~
~ . -."

...c:,.~ '& .'"
..... ...

XN'J t::- 92
X N . ~~-.... -..

-;/
9k

• t::- •
... -:::1; .. ··-· .. • ... •

.-.-... . -..

X Nk I> 9k
resample combine

adapt

3.1 Bagging

Breiman (1994, 1996a) introduced a procedure called bagging ("Qootstrap aggre
gating") for tree classifiers that may also be used for ANNs. The bagging algorithm
starts with a training set X N of size N. Several bootstrap replica X J.." . .. ,X7v are
constructed and a neural network is trained on each. These networks are finally
combined by majority voting. The bootstrap sets X1 consist of N patterns drawn
with replacement from the original training set (see Efron & Tibshirani (1993) for
more information on the bootstrap).

ARC-ill: A New Adaptive Resampling Algorithm/or ANN Classifiers 525

3.2 Arcing

3.2.1 Arcing Based on Misclassification Rates

Arcing, which is a more sophisticated version of bagging, was first introduced by
Freund & Schapire (1995) and called boosting. The new training sets are not con
structed by uniformly sampling from the empirical distribution of the training set
XN " but from a distribution over XN that includes information about previous
misclassifications.

Let P~ denote the probability that pattern xn is included into the i-th training set
X},y and initialize with P~ = 1/ N. Freund and Schapire's arcing algorithm, called
arc-fs as in Breiman (1996a), works as follows:

1. Construct a pattern set Xiv by sampling with replacement with probabili
ties P~ from X N and train a classifier 9i using set xiv.

2. Set dn = 1 for all patterns that are misclassified by 9i and zero otherwise.
With fi = L~=lp~dn and!3i = (1- fi)/fi update the probabilities by

i /3dn HI _ Pn i
Pn - N 'd

Ln=l P~(3i n

3. Set i := i + 1 and repeat.

After k steps, 91' . . . ,gk are combined with weighted voting were each 9j'S vote has
weight log!3i. Breiman (1996a) and Quinlan (1996) compare bagging and arcing for
CART and C4.5 classifiers, respectively. Both bagging and arc-fs are very effective
in reducing the high variance component of tree classifiers, with adaptive resampling
being a bit better than simple bagging.

3.2.2 Arcing Based on Network Error

Independently from the arcing and bagging procedures described above, adaptive
resampling has been introduced for active pattern selection in leave-k-out cross
validation CV / APS (Leisch & Jain, 1996; Leisch et al., 1995). Whereas arc-fs (or
Breiman's arc-x4) uses only the information whether a pattern is misclassified or
not, in CV / APS the fact that MLPs approximate the posterior probabilities of the
classes (Kanaya & Miyake, 1991) is utilized, too. We introduce a simple new arcing
method based on the main idea of CV / APS that the "importance" of a pattern for
the learning process can be measured by the aggregated output error of an MLP
for the pattern over several training runs.

Let the classifier 9 be an ANN using l-of-c coding, i.e., one output node per class,
the target t(x) for each input x is one at the node corresponding to the class of
x and zero at the remaining output nodes . Let e(x) = It(x) - 9(x))12 be the
squared error ofthe network for input x. Patterns that 'repeatedly have high output
errors are somewhat harder to learn for the network and therefore their resampling
probabilities are increased proportionally to the error. Error-dependent resampling

526 F. Leisch and K. Hornik

introduces a "grey-scale" of pattern-importance as opposed to the "black and white"
paradigm of misclassification dependent resampling.

Again let p~ denote the probability that pattern xn is included into the i-th training
set Xiv and initialize with p; = 1/ N. Our new arcing algorithm, called arc-Ih, works
as follows:

1. Construct a pattern set xiv by sampling with replacement with probabili
ties p~ from X N and train a classifier gj using set xiv.

2. Add the network output error of each pattern to the resampling probabili
ties:

3. Set i := i + 1 and repeat.

After k steps, g1' ... ,gk are combined by majority voting.

3.3 Jittering

In our experiments, we also compare the above resample and combine methods with
jittering, which resamples the training set by contaminating the inputs by artificial
noise. No voting is done, but the size of the training set is increased by creation of
artificial inputs "around" the original inputs, see Koistinen & Holmstrom (1992).

4 Experiments

We demonstrate the effects of bagging and arcing on several well known artificial
benchmark problems. For all problems, i - h - c single hidden layer perceptrons
(SHLPs) with i input, h hidden and c output nodes were used. The number of hid
den nodes h was chosen in a way that the corresponding networks have reasonably
low bias.

2 Spirals with noise: 2-dimensional input, 2 classes. Inputs with uniform noise
around two spirals. N = 300. Rg* = 0%. 2-14-2 SHLP.

Continuous XOR: 2-dimensional input, 2 classes. Uniform inputs on the 2-
dimensional square -1 :::; x, y :::; 1 classified in the two classes x * y ~ 0 and
x * y < O. N = 300. Rg* = 0%. 2-4-2 SHLP.

Ringnorm: 20-dimensional input, 2 classes. Class 1 is normal wit mean zero and
covariance 4 times the identity matrix. Class 2 is a unit normal with mean
(a, a, ... , a). a = 2/.../20. N = 300. Rg* = 1.2%. 20-4-2 SHLP.

The first two problems are standard benchmark problems (note however that we
use a noisy variant of the standard spirals problem); the last one is, e.g., used in
Breiman (1994, 1996a).

ARC-LH: A New Adaptive Resampling Algorithm/or ANN Classifiers 527

All experiments were replicated 50 times, in each bagging and arcing replication
10 classifiers were combined to build a voting classifier. Generalization errors were
computed using Monte Carlo techniques on test sets of size 10000.

Table 1 gives the average risk over the 50 replications for a standard single SHLP,
an SHLP trained on a jittered training set and for voting classifiers using ten votes
constructed with bagging, arc-Ih and arc-fs, respectively. The Bayes risk ofthe spiral
and xor example is zero, hence the risk of a network equals the sum of its bias and
variance. The Bayes risk of the ringnorm example is 1.2%.

Breiman Kong & Dietterich

Rg Bias(g) Var(g) Bias(g) Var(g)

2 Spirals
standard 7.75 0.32 7.43 0.82 6.93
jitter 6.53 0.26 6.27 0.52 6.02
bagging 4.39 0.35 4.04 0.68 3.71
arc-fs 4.31 0.35 3.96 0.60 3.71
arc-Ih 4.32 0.31 4.01 0.72 3.60

XOR
standard 6.54 0.53 6.01 1.32 5.22
jitter 6.29 0.37 5.92 1.08 5.21
bagging 3.69 0.59 3.09 1.22 2.47
arc-fs 3.73 0.58 3.15 1.12 2.61
arc-Ih 3.58 0.50 3.08 1.20 2.38

Ringnorm
standard 18.64 9.19 8.26 13.84 4.80
jitter 18.56 9.03 8.34 13.72 4.84
bagging 15.72 9.61 4.91 13.54 2.18
arc-fs 15.71 9.70 4.81 13.58 2.13
arc-Ih 15.63 9.30 5.13 13.20 2.43

Table 1: Bias-variance decompositions.

The variance part was drastically reduced by the res ample & combine methods, with
only a negligible change in bias. Note the low bias in the spiral and xor problems.
ANNs obviously can solve these classification tasks (one could create appropriate
nets by hand), but of course training cannot find the exact boundaries between the
classes. Averaging over several nets helps to overcome this problem. The bias in
the ringnorm example is rather high, indicating that a change of network topology
(bigger net, etc.) or training algorithm (learning rate, etc.) may lower the overall
risk.

5 Summary

Comparison of of the resample and combine algorithms shows slight advantages
for adaptive resampling, but no algorithm dominates the other two. Further im-

528 F. Leisch and K. Hornik

provements should be possible based on a better understanding of the theoretical
properties of resample and combine techniques. These issues are currently being
investigated.

References

Breiman, L. (1994). Bagging predictors. Tech. Rep. 421, Department of Statistics, Uni
versity of California, Berkeley, California, USA.

Breiman, 1. (1996a). Bias, variance, and arcing classifiers. Tech. Rep. 460, Statistics
Department, University of California, Berkeley, CA, USA.

Breiman, L. (1996b). Stacked regressions. Machine Learning, 24,49.

Drucker, H. & Cortes, C. (1996) . Boosting decision trees. In Touretzky, S., Mozer, M. C.,
& Hasselmo, M. E. (eds.), Advances in Neural Information Processing Systems, vol. 8.
MIT Press.

Efron, B. & Tibshira...u, R. J. (1993). An introduction to the bootstrap. Monographs on
Statistics and Applied Probability. New York: Chapman & Hall.

Freund, Y. & Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning
and an application to boosting. Tech. rep., AT&T Bell Laboratories, 600 Mountain Ave,
Murray Hill, NJ, USA.

Kanaya, F. & Miyake, S. (1991). Bayes statistical behavior and valid generalization of
pattern classifying neural networks. IEEE Transactions on Neural Networks, 2(4), 471-
475.

Kohavi, R. & Wolpert, D. H. (1996). Bias plus variance decomposition for zero-one loss.
In Machine Learning: Proceedings of the 19th International Conference.

Koistinen, P. & Holmstrom, L. (1992). Kernel regression and backpropagation training
with noise. In Moody, J. E., Hanson, S. J., & Lippmann, R. P. (eds.), Advances in Neural
Information Processing Systems, vol. 4, pp. 1033-1039. Morgan Kaufmann Publishers,
Inc.

Kong, E. B. & Dietterich, T. G. (1995). Error-correcting output coding corrects bias and
variance. In Machine Learning: Proceedings of the 12th International Conference, pp.
313-321. Morgan-Kaufmann.

Leisch, F. & Jain, 1. C. (1996). Cross-validation with active pattern selection for neural
network classifiers. Submitted to IEEE Transactions on Neural Networks, in Review.

Leisch, F., Jain, 1. C., & Hornik, K. (1995). NN classifiers: Reducing the computational
cost of cross-validation by active pattern selection. In Artificial Neural Networks and
Expert Systems, vol. 2. Los Alamitos, CA, USA: IEEE Computer Society Press.

Quinlan, J. R. (1996). Bagging, boosting and C4.5. University of Sydney, Australia.

Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge, UK: Cambridge
University Press.

Tibshirani, R. (1996a). Bias, variance and prediction error for classification rules. Univer
sity of Toronto, Canada.

Tibshirani, R. (1996b). A comparison of some error estimates for neural network models.
Neural Computation, 8(1), 152-163.

