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Abstract 

We analyse online learning from finite training sets at non­
infinitesimal learning rates TJ. By an extension of statistical me­
chanics methods, we obtain exact results for the time-dependent 
generalization error of a linear network with a large number of 
weights N. We find, for example, that for small training sets of 
size p ~ N, larger learning rates can be used without compromis­
ing asymptotic generalization performance or convergence speed. 
Encouragingly, for optimal settings of TJ (and, less importantly, 
weight decay ,\) at given final learning time, the generalization per­
formance of online learning is essentially as good as that of offline 
learning. 

1 INTRODUCTION 

The analysis of online (gradient descent) learning, which is one of the most common 
approaches to supervised learning found in the neural networks community, has 
recently been the focus of much attention [1]. The characteristic feature of online 
learning is that the weights of a network ('student') are updated each time a new 
training example is presented, such that the error on this example is reduced. In 
offline learning, on the other hand, the total error on all examples in the training 
set is accumulated before a gradient descent weight update is made. Online and 
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offline learning are equivalent only in the limiting case where the learning rate 
T) --* 0 (see, e.g., [2]). The main quantity of interest is normally the evolution of 
the generalization error: How well does the student approximate the input-output 
mapping ('teacher') underlying the training examples after a given number of weight 
updates? 

Most analytical treatments of online learning assume either that the size of the 
training set is infinite, or that the learning rate T) is vanishingly small. Both of 
these restrictions are undesirable: In practice, most training sets are finite, and non­
infinitesimal values of T) are needed to ensure that the learning process converges 
after a reasonable number of updates. General results have been derived for the 
difference between online and offline learning to first order in T), which apply to 
training sets of any size (see, e. g., [2]). These results, however, do not directly 
address the question of generalization performance. The most explicit analysis of 
the time evolution of the generalization error for finite training sets was provided by 
Krogh and Hertz [3] for a scenario very similar to the one we consider below. Their 
T) --* 0 (i.e., offline) calculation will serve as a baseline for our work. For finite T), 

progress has been made in particular for so-called soft committee machine network 
architectures [4, 5], but only for the case of infinite training sets. 

Our aim in this paper is to analyse a simple model system in order to assess how the 
combination of non-infinitesimal learning rates T) and finite training sets (containing 
a examples per weight) affects online learning. In particular, we will consider 
the dependence of the asymptotic generalization error on T) and a, the effect of 
finite a on both the critical learning rate and the learning rate yielding optimal 
convergence speed, and optimal values of T) and weight decay A. We also compare 
the performance of online and offline learning and discuss the extent to which infinite 
training set analyses are -applicable for finite a. 

2 MODEL AND OUTLINE OF CALCULATION 

We consider online training of a linear student network with input-output relation 

Here x is an N-dimensional vector of real-valued inputs, y the single real output 
and w the wei~t vector of the network. ,T, denotes the transpose of a vector and 
the factor 1/VN is introduced for convenience. Whenever a training example (x, y) 
is presented to the network, its weight vector is updated along the gradient of the 
squared error on this example, i. e., 

where T) is the learning rate. We are interested in online learning from finite train­
ing sets, where for each update an example is randomly chosen from a given set 
{(xll,yll),j.l = l. .. p} ofp training examples. (The case of cyclical presentation of 
examples [6] is left for future study.) If example J.l is chosen for update n, the weight 
vector is changed to 

(1) 

Here we have also included a weight decay 'Y. We will normally parameterize the 
strength of the weight decay in terms of A = 'YO' (where a = p / N is the number 
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of examples per weight), which plays the same role as the weight decay commonly 
used in offline learning [3]. For simplicity, all student weights are assumed to be 
initially zero, i.e., Wn=o = o. 
The main quantity of interest is the evolution of the generalization error of the 
student. We assume that the training examples are generated by a linear 'teacher', 
i.e., yJJ = W. T x JJ IVN +e, where eJJ is zero mean additive noise of variance (72. The 
teacher weight vector is taken to be normalized to w. 2 = N for simplicity, and the 
input vectors are assumed to be sampled randomly from an isotropic distribution 
over the hypersphere x 2 = N. The generalization error, defined as the average of 
the squared error between student and teacher outputs for random inputs, is then 

where Vn = Wn - W •. 

In order to make the scenario analytically tractable, we focus on the limit N -+ 00 

of a large number of input components and weights, taken at constant number of 
examples per weight a = piN and updates per weight ('learning time') t = niN. In 
this limit, the generalization error fg(t) becomes self-averaging and can be calculated 
by averaging both over the random selection of examples from a given training set 
and over all training sets. Our results can be straightforwardly extended to the case 
of percept ron teachers with a nonlinear transfer function, as in [7]. 

The usual statistical mechanical approach to the online learning problem expresses 
the generalization error in terms of 'order parameters' like R = ~wJw. whose 
(self-averaging) time evolution is determined from appropriately averaged update 
equations. This method works because for infinite training sets, the average or­
der parameter updates can again be expressed in terms of the order parameters 
alone. For finite training sets, on the other hand, the updates involve new order 
parameters such as Rl = ~wJ Aw., where A is the correlation matrix of the 
training inputs, A = ~L-P =lxJJ(xJJ)T. Their time evolution is in turn determined 
by order parameters involving higher powers of A, yielding an infinite hierarchy 
of order parameters. We solve this problem by considering instead order parame­
ter (generating) junctions [8] such as a generalized form of the generalization error 
f(t;h) = 2~vJexp(hA)vn . This allows powers of A to be obtained by differentia­
tion with respect to h, reSUlting in a closed system of (partial differential) equations 
for f(t; h) and R(t; h) = ~ wJ exp(hA)w •. 

The resulting equations and details of their solution will be given in a future publi­
cation. The final solution is most easily expressed in terms of the Laplace transform 
of the generalization error 

fg(Z) = '!!.. fdt fg(t)e-z(f//a)t = fdz) + T}f2(Z) + T}2f3(Z) (2) 
a ~ 1 - T}f4(Z) 

The functions fi (z) (i = 1 ... 4) can be expressed in closed form in terms of a, (72 

and A (and, of course, z). The Laplace transform (2) yields directly the asymptotic 
value of the generalization error, foo = fg(t -+ (0) = limz--+o zig{z) , which can be 
calculated analytically. For finite learning times t, fg(t) is obtained by numerical 
inversion of the Laplace transform. 

3 RESULTS AND DISCUSSION 

We now discuss the consequences of our main result (2), focusing first on the asymp­
totic generalization error foo, then the convergence speed for large learning times, 
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a=O.s a=i <1=2 

Figure 1: Asymptotic generalization error (00 vs 1] and A. a as shown, (1"2 = 0.1. 

and finally the behaviour at small t. For numerical evaluations, we generally take 
(1"2 = 0.1, corresponding to a sizable noise-to-signal ratio of JQ.I ~ 0.32. 

The asymptotic generalization error (00 is shown in Fig. 1 as a function of 1] and A 
for a = 0.5, 1, 2. We observe that it is minimal for A = (1"2 and 1] = 0, as expected 
from corresponding resul ts for offline learning [3]1. We also read off that for fixed A, 
(00 is an increasing function of 1]: The larger 1], the more the weight updates tend 
to overshoot the minimum of the (total, i.e., offline) training error. This causes a 
diffusive motion of the weights around their average asymptotic values [2] which 
increases (00. In the absence of weight decay (A = 0) and for a < 1, however, (00 
is independent of 1]. In this case the training data can be fitted perfectly; every 
term in the total sum-of-squares training error is then zero and online learning does 
not lead to weight diffusion because all individual updates vanish . In general, the 
relative increase (00(1])/(00(1] = 0) - 1 due to nonzero 1] depends significantly on a. 
For 1] = 1 and a = 0.5, for example, this increase is smaller than 6% for all A (at 
(1"2 = 0.1), and for a = 1 it is at most 13%. This means that in cases where training 
data is limited (p ~ N), 1] can be chosen fairly large in order to optimize learning 
speed, without seriously affecting the asymptotic generalization error. In the large 
a limit, on the other hand, one finds (00 = ((1"2/2)[1/a + 1]/(2 - 1])]. The relative 
increase over the value at 1] = a therefore grows linearly with a; already for a = 2, 
increases of around 50% can occur for 1] = 1. 

Fig. 1 also shows that (00 diverges as 1] approaches a critical learning rate 1]e: As 
1] -+ 1]e, the 'overshoot' of the weight update steps becomes so large that the weights 
eventually diverge. From the Laplace transform (2), one finds that 1]e is determined 
by 1]e(4(Z = 0) = 1; it is a function of a and A only. As shown in Fig. 2b-d, 1]e 
increases with A. This is reasonable, as the weight decay reduces the length of the 
weight vector at each update, counteracting potential weight divergences. In the 
small and large a limit, one has 1]e = 2( 1 + A) and 1]e = 2( 1 + A/a), respectively. 
For constant A, 1]e therefore decreases2 with a (Fig. 2b-d) . 

We now turn to the large t behaviour of the generalization error (g(t). For small 
1], the most slowly decaying contribution (or 'mode') to (g(t) varies as exp( -ct), its 

1 The optimal value of the unscaledweight decay decreases with a as 'Y = (1"2 ja, because 
for large training sets there is less need to counteract noise in the training data by using 
a large weight decay. 

2Conversely, for constant 'Y, f"/e increases with a from 2(1 + 'Ya) to 2(1 + 'Y): For large a , 
the weight decay is applied more often between repeat presentations of a training example 
that would otherwise cause the weights to diverge. 
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decay constant c = 71['\ + (va - 1 )2]/ a scaling linearly with 71, the size of the weight 
updates, as expected (Fig. 2a). For small a, the condition ct » 1 for fg(t) to have 
reached its asymptotic value foo is 71(1 + ,\)(t/a) » 1 and scales with tla, which is 
the number of times each training example has been used. For large a, on the other 
hand, the condition becomes 71t » 1: The size of the training set drops out since 
convergence occurs before repetitions of training examples become significant. 

For larger 71, the picture changes due to a new 'slow mode' (arising from the de­
nominator of (2)). Interestingly, this mode exists only for 71 above a finite threshold 
71min = 2/(a1/ 2 + a- 1/ 2 -1). For finite a, it could therefore not have been predicted 
from a small 71 expansion of (g(t). Its decay constant Cslow decreases to zero as 
71 -t 71e, and crosses that of the normal mode at 71x(a,'\) (Fig. 2a). For 71 > 71x, 
the slow mode therefore determines the convergence speed for large t, and fastest 
convergence is obtained for 71 = 71x. However, it may still be advantageous to use 
lower values of 71 in order to lower the asymptotic generalization error (see below); 
values of 71 > 71x would deteriorate both convergence speed and asymptotic per­
formance. Fig. 2b-d shows the dependence of 71min, 71x and 71e on a and'\. For 
,\ not too large, 71x has a maximum at a ~ 1 (where 71x ~ 71e), while decaying as 
71x = 1+2a- 1/ 2 ~ ~71e for larger a. This is because for a ~ 1 the (total training) er­
ror surface is very anisotropic around its minimum in weight space [9]. The steepest 
directions determine 71e and convergence along them would be fastest for 71 = ~71e 
(as in the isotropic case). However, the overall convergence speed is determined by 
the shallow directions, which require maximal 71 ~ 71e for fastest convergence. 

Consider now the small t behaviour of fg(t). Fig. 3 illustrates the dependence of 
fg(t) on 71; comparison with simulation results for N = 50 clearly confirms our 
calculations and demonstrates that finite N effects are not significant even for such 
fairly small N. For a = 0.7 (Fig. 3a), we see that nonzero 71 acts as effective update 
noise, eliminating the minimum in fg(t) which corresponds to over-training [3]. foo 
is also seen to be essentially independent of 71 as predicted for the small value of 
,\ = 10-4 chosen. For a = 5, Fig. 3b clearly shows the increase of foo with 71. It 
also illustrates how convergence first speeds up as 71 is increased from zero and then 
slows down again as 71e ~ 2 is approached. 

Above, we discussed optimal settings of 71 and ,\ for minimal asymptotic gener­
alization error foo. Fig. 4 shows what happens if we minimize fg(t) instead for 
a given final learning time t, corresponding to a fixed amount of computational 
effort for training the network. As t increases, the optimal 71 decreases towards 
zero as required by the tradeoff between asymptotic performance and convergence 

1..=0 1..=0.1 1..=1 
4,-------, 4,---------, 

(a) (b) (c) 

c 11m in 

o o J 2a 3 4 S o J 2 a 3 4 S 

Figure 2: Definitions of71min, 71x and 71e, and their dependence on a (for'\ as shown). 
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Figure 3: fg vs t for different TJ. Simulations for N = 50 are shown by symbols 
(standard errors less than symbol sizes). A=1O-4 , 0-2 =0.1, a as shown. The learning 
rate TJ increases from below (at large t) over the range (a) 0.5 .. . 1.95, (b) 0.5 ... 1. 75. 
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Figure 4: Optimal TJ and A vs given final learning time t, and resulting (g. 

Solid/dashed lines: a = 1 / a =2; bold/thin lines: online/offline learning. 0-2 =0.1. 
Dotted lines in (a): Fits of form TJ = (a + bIn t)/t to optimal TJ for online learning. 

speed. Minimizing (g(t) ::::: (00+ const . exp( -ct) ~ Cl + TJC2 + C3 exp( -C4TJt) leads to 
TJopt = (a + bIn t)/t (with some constants a, b, Cl...4). Although derived for small TJ, 
this functional form (dotted lines in Fig. 4a) also provides a good description down 
to fairly small t , where TJopt becomes large. The optimal weight decay A increases3 

with t towards the limiting value 0- 2 . However, optimizing A is much less impor­
tant than choosing the right TJ: Minimizing (g(t) for fixed A yields almost the same 
generalization error as optimizing both TJ and A (we omit detailed results here4 ). It 
is encouraging to see from Fig. 4c that after as few as t = 10 updates per weight 
with optimal TJ, the generalization error is almost indistinguishable from its optimal 
value for t --t 00 (this also holds if A is kept fixed). Optimization of the learning 
rate should therefore be worthwhile in most practical scenarios. 

In Fig. 4c, we also compare the performance of online learning to that of offline 
learning (calculated from the appropriate discrete time version of [3]), again with 

30ne might have expected the opposite effect of having larger>. at low t in order to 
'contain' potential divergences from the larger optimal learning rates tJ. However, smaller 
>. tends to make the asymptotic value foo less sensitive to large values of tJ as we saw 
above, and we conclude that this effect dominates. 

4Por fixed>. < u 2 , where fg(t) has an over-training minimum (see Pig. 3a), the asymp­
totic behaviour of tJopt changes to tJopt <X C 1 (without the In t factor), corresponding to a 
fixed effective learning time tJt required to reach this minimum. 
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optimized values of TJ and A for given t. The performance loss from using online 
instead of offline learning is seen to be negligible. This may seem surprising given 
the effective noise on weight updates implied by online learning, in particular for 
small t. However, comparing the respective optimal learning rates (Fig. 4a), we see 
that online learning makes up for this deficiency by allowing larger values of TJ to 
be used (for large a, for example, TJc(offline) = 2/0' « TJc(online) = 2). 

Finally, we compare our finite a results with those for the limiting case a -+ 00. 
Good agreement exists for any learning time t if the asymptotic generalization error 
(00 (a < 00) is dominated by the contribution from the nonzero learning rate TJ (as is 
the case for a -+ 00). In practice, however, one wants TJ to be small enough to make 
only a negligible contribution to (00(0' < 00); in this regime, the a -+ 00 results are 
essentially useless. 

4 CONCLUSIONS 

The main theoretical contribution of this paper is the extension of the statistical 
mechanics method of order parameter dynamics to the dynamics of order parameter 
(generating) functions . The results that we have obtained for a simple linear model 
system are also of practical relevance. For example, the calculated dependence on 
TJ of the asymptotic generalization error (00 and the convergence speed shows that, 
in general, sizable values of TJ can be used for training sets of limited size (a ~ 1), 
while for larger a it is important to keep learning rates small. We also found a 
simple functional form for the dependence of the optimal TJ on a given final learning 
time t. This could be used, for example, to estimate the optimal TJ for large t from 
test runs with only a small number of weight updates. Finally, we found that for 
optimized TJ online learning performs essentially as well as offline learning, whether 
or not the weight decay A is optimized as well. This is encouraging, since online 
learning effectively induces noisy weight updates. This allows it to cope better than 
offline learning with the problem of local (training error) minima in realistic neural 
networks. Online learning has the further advantage that the critical learning rates 
are not significantly lowered by input distributions with nonzero mean, whereas for 
offline learning they are significantly reduced [10]. In the future, we hope to extend 
our approach to dynamic (t-dependent) optimization of TJ (although performance 
improvements over optimal fixed TJ may be small [6]), and to more complicated net­
work architectures in which the crucial question of local minima can be addressed. 
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