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ABSTRACT 

This paper presents a new approach to speech recognition with hybrid 
HMM/ANN technology. While the standard approach to hybrid 
HMMI ANN systems is based on the use of neural networks as 
posterior probability estimators, the new approach is based on the use 
of mutual information neural networks trained with a special learning 
algorithm in order to maximize the mutual information between the 
input classes of the network and its resulting sequence of firing output 
neurons during training. It is shown in this paper that such a neural 
network is an optimal neural vector quantizer for a discrete hidden 
Markov model system trained on Maximum Likelihood principles. 
One of the main advantages of this approach is the fact, that such 
neural networks can be easily combined with HMM's of any 
complexity with context-dependent capabilities. It is shown that the 
resulting hybrid system achieves very high recognition rates, which 
are now already on the same level as the best conventional HMM 
systems with continuous parameters, and the capabilities of the 
mutual information neural networks are not yet entirely exploited. 

1 INTRODUCTION 

Hybrid HMM/ANN systems deal with the optimal combination of artificial neural 
networks (ANN) and hidden Markov models (HMM). Especially in the area of automatic 
speech recognition, it has been shown that hybrid approaches can lead to very powerful 
and efficient systems, combining the discriminative capabilities of neural networks and 
the superior dynamic time warping abilities of HMM's. The most popular hybrid 
approach is described in (Hochberg, 1995) and replaces the component modeling the 
emission probabilities of the HMM by a neural net. This is possible, because it is shown 
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in (Bourlard, 1994) that neural networks can be trained so that the output of the m-th 
neuron approximates the posterior probability p(QmIX). In this paper, an alternative 
method for constructing a hybrid system is presented. It is based on the use of discrete 
HMM's which are combined with a neural vector quantizer (VQ) in order to form a hybrid 
system. Each speech feature vector is presented to the neural network, which generates a 
firing neuron in its output layer. This neuron is processed as VQ label by the HMM's. 
There are the following arguments for this alternative hybrid approach: 

• The neural vector quantizer has to be trained on a special information theory criterion, 
based on the mutual information between network input and resulting neuron firing 
sequence. It will be shown that such a network is the optimal acoustic processor for a 
discrete HMM system, resulting in a profound mathematical theory for this approach. 

• Resulting from this theory, a formula can be derived which jointly describes the 
behavior of the HMM and the neural acoustic processor. In that way, both systems can 
be described in a unified manner and both major components of the hybrid system can 
be trained using a unified learning criterion. 

• The above mentioned theoretical background leads to the development of new neural 
network paradigms using novel training algorithms that have not been used before in 
other areas of neurocomputing, and therefore represent major challenges and issues in 
learning and training for neural systems. 

• The neural networks can be easily combined with any HMM system of arbitrary 
complexity. This leads to the combination of optimally trained neural networks with 
very powerful HMM's, having all features useful for speech recognition, e.g. triphones, 
function words, crossword triphones, etc .. Context-dependency, which is very desirable 
but relatively difficult to realize with a pure neural approach, can be left to the HMM's. 

• The resulting hybrid system has still the basic structure of a discrete system, and 
therefore has all the effective features associated with discrete systems, e.g. quick and 
easy training as well as recognition procedures, real-time capabilities, etc .. 

• The work presented in this paper has been also successfully implemented for a 
demanding speech recognition problem, the 1000 word speaker-independent continuous 
Resource Management speech recognition task. For this task, the hybrid system 
produces one of the best recognition results obtained by any speech recognition system. 

In the following section, the theoretical foundations of the hybrid approach are briefly 
explained. A unified probabilistic model for the combined HMMIANN system is derived, 
describing the interaction of the neural and the HMM component. Furthermore, it is 
shown that the optimal neural acoustic processor can be obtained from a special 
information theoretic network training algorithm. 

2 INFORMATION THEORY PRINCIPLES FOR NEURAL 
NETWORK TRAINING 

We are considering now a neural network of arbitrary topology used as neural vector 
quantizer for a discrete HMM system. If K patterns are presented to the hybrid system 
during training, the feature vectors resulting from these patterns using any feature 
extraction method can be denoted as x(k), k=l.. .K. If these feature vectors are presented to 
the input layer of a neural network, the network will generate one firing neuron for each 
presentation. Hence, all K presentations will generate a stream of firing neurons with 
length K resulting from the output layer of the neural net. This label stream is denoted as 
Y=y(l) ... y(K). The label stream Y will be presented to the HMM's, which calculate the 
probability that this stream has been observed while a pattern of a certain class has been 
presented to the system. It is assumed, that M different classes Q m are active in the 
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system, e.g. the words or phonemes in speech recognition. Each feature vector ~(k) will 
belong to one of these classes. The class Om, to which feature vector ~(k) belongs is 
denoted as Q(k). The major training issue for the neural network can be now formulated 
as follows: How should the weights of the network be trained, so that the network 
produces a stream of firing neurons that can be used by the discrete HMM's in an optimal 
way? It is known that HMM's are usually trained with information theory methods which 
mostly rely on the Maximum Likelihood (ML) principle. If the parameters of the hybrid 
system (i.e. transition and emission probabilities and network weights) are summarized in 
the vector !!, the probability P!!(x(k)IQ(k» denotes the probability of the pattern X at 
discrete time k, under the assumption that it has been generated by the model representing 
class O(k), with parameter set !!. The ML principle will then try to maximize the joint 
probability of all presented training patterns ~(k), according to the following Maximum 
Likelihood function: 

fl* = arg max {~ i log P!! (K(k) I Q(k»j 
~ k=1 (1) 

where !!* is the optimal parameter vector maximizing this equation. Our goal is to feed 
the feature vector ~ into a neural network and to present the neural network output to the 
Markov model. Therefore, one has to introduce the neural network output in a suitable 
manner into the above formula. If the vector ~ is presented to the network input layer, and 
we assume that there is a chance that any neuron Yn, n=1...N (with network output layer 
size N) can fire with a certain probability, then the output probability p(~IQ) in (1) can 
be written as: 

N N 
p(KIQ) = I p(x ,Y n IQ) = I p(y n IQ) . p(x Iy n,Q) 

n=1 n=1 (2) 

Now, the combination of the neural component with the HMM can be made more 
obvious: In (2), typically the probability P(YnIQ) will be described by the Markov model, 
in terms of the emission probabilities of the HMM. For instance, in continuous 
parameter HMM's, these probabilities are interpreted as weights for Gaussian mixtures. In 
the case of semi-continuous systems or discrete HMM's, these probabilities will serve as 
discrete emission probabilities of the codebook labels . The probability p(xIYn,Q) 
describes the acoustic processor of the system and is characterizing the relation between 
the vector ~ as input to the acoustic processor and the label Yn, which can be considered 
as the n-th output component of the acoustic processor. This n-th output component may 
characterize e.g. the n-th Gaussian mixture component in continuous parameter HMM's, 
or the generation of the n-th label of a vector quantizer in a discrete system. This 
probability is often considered as independent of the class 0 and can then be expressed as 
p(xIYn). It is exactly this probability, that can be modeled efficiently by our neural 
network. In this case, the vector X serves as input to the neural network and Yn 
characterizes the n-th neuron in the output layer of the network. Using Bayes law, this 
probability can be written as: 

P(YnIK) ' pW 
p(xl Y n) = p(y n) 

(3) 

yielding for (2): 

(4) 
Using again Bayes law to express 
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(5) 

one obtains from (4): 
p(K) N 

p(KI.Q)= -(.Q) . L p(.Qlyn) ·p(ynlo!J 
p n=1 (6) 

We have now modified the class-dependent probability of the feature vector X in a way 
that allows the incorporation of the probability P(YnIX). This probability allows a better 
characterization of the behavior of the neural network, because it describes the probability 
of the various neurons Yn, if the vector X is presented to the network input. Therefore, 
these probabilities give a good description of the input/output behavior of the neural 
network. Eq. (6) can therefore be considered as probabilistic model for the hybrid system, 
where the neural acoustic processor is characterized by its input/output behavior. Two 
cases can be now distinguished: In the first case, the neural network is assumed to be a 
probabilistic paradigm, where each neuron fires with a certain probability, if an input 
vector is presented. In this case all neurons contribute to the information forwarded to the 
HMM's. As already mentioned, in this paper, the second possible case is considered, 
namely that only one neuron in the output layer fires and will be fed as observed label to 
the HMM. In this case, we have a deterministic decision, and the probability P(YnIX) 
describes what neuron Yn* fires if vector X is presented to the input layer. Therefore, this 
probability reduces to 

(7) 
Then, (6) yields: 

(8) 

Now, the class-dependent probability p(Xln) is expressed through the probability 
p(nIYn*), involving directly the firing neuron Yn*, when feature vector X is presented. 
One has now to turn back to (1), recalling the fact, that this equation describes the fact 
that the Markov models are trained with the ML criterion. It should also be recalled, that 
the entire sequence of feature vectors, x(k), k=l...K, results in a label stream of firing 
neurons Yn*(k), k=l...K, where Yn*(k) is the firing neuron if the k-th vector x(k) is 
presented to the neural network. Now, (8) can be substituted into (1) for each presentation 
k, yielding the modified ML criterion: 

{ 
K p(x(k)) } 

1( = arg;ax ::1 log P(Q (k)) . p(.Q(k) I Y n*,k)) 

~ arg;ax {~, log p(x (k)) - ~109P(Q(k)) + ~IOg p(Q(k) I Y n.(k))} 

(9) 

Usually, in a continuous parameter system, the probability p(x) can be expressed as: 
N 

p(K) = LP(K,ly n) . p(y n) 
n=1 (10) 

and is therefore dependent of the parameter vector ft, because in this case, p(xIYn) can be 
interpreted as the probability provided by the Gaussian distributions, and the parameters of 
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the Gaussians will depend on ft. As just mentioned before, in a discrete system, only one 
firing neuron Yn* survives, resulting in the fact that only the n*-th member remains in 
the sum in (10). This would correspond to only one "firing Gaussian" in the continuous 
case, leading to the following expression for p(x): 

p(K) = p(x Iy nJ· p(y nJ = p(K,y nJ = p(y n"lx) . p(x) (11) 

Considering now the fact, that the acoustic processor is not represented by a Gaussian but 
instead by a vector quantizer, where the probability P(Yn*IX) of the firing neuron is equal 
to 1, then (11) reduces to p(~) = p(x) and it becomes obvious that this probability is not 
affected by any distribution that depends on the parameter vector ft. This would be 
different, if P(Yn*IX) in (11) would not have binary characteristics as in (7), but would be 
computed by a continuous function which in this case would depend on the parameter 
vector ft. Thus, without consideration of p(X), the remaining expression to be maximized 
in (9) reduces to: 

,r( = arg;ax [~ ~IOg p(.Q( k)) + ! log p(.Q( k) I Y n·(k)) 1 

= arg max [- E {log p(.o)} + E {log p(.o I y n")}] 
fJ.. 

(12) 

These expectations of logarithmic probabilities are also defined as entropies. Therefore, 
(9) can be also written as 

fl." = arg max {H (.0) - H(.o I Y)} 
fJ.. (13) 

This equation can be interpreted as follows: The term on the right side of (13) is also 
known as the mutual information I(n,Y~ between the probabilistic variables nand Y, 
i.e. : 

1(.0, Y) =H(.o) - H (.01 Y) =H (Y) - H(YI.o) (14) 

Therefore, the final information theory-based training criterion for the neural network can 
be formulated as follows: The synaptic weights of the neural network should be chosen as 
to maximize the mutual information between the string representing the classes of the 
vectors presented to the network input layer during training and the string representing the 
resulting sequence of firing neurons in the output layer of the neural network. This can be 
also expressed as the Maximum Mutual Information (MMI) criterion for neural network 
training. This concludes the proof that MMI neural networks are indeed optimal acoustic 
processors for HMM's trained with maximum likelihood principles. 

3 REALIZATION OF MMI TRAINING ALGORITHMS FOR 
NEURAL NETWORKS 

Training the synaptic weights of a neural network in order to achieve mutual information 
maximization is not easy. Two different algorithms have been developed for this task and 
can only be briefly outlined in this paper. A detailed description can be found in (Rigoll, 
1994) and (Neukirchen, 1996). The first experiments used a single-layer neural network 
with Euclidean distance as propagation function. The first implementation of the MMI 
training paradigm has been realized in (Rigoll, 1994) and is based on a self-organizing 
procedure, starting with initial weights derived from k-means clustering of the training 
vectors, followed by an iterative procedure to modify the weights. The mutual 
information increases in a self-organizing way from a low value at the start to a much 
higher value after several iteration cycles. The second implementation has been realized 



Mutual Information Neural Networks for Hybrid HMMIANN Speech Recognition 777 

recently and is described in detail in (Neukirchen, 1996). It is based on the idea of using 
gradient methods for finding the MMI value. This technique has not been used before, 
because the maximum search for finding the firing neuron in the output layer has 
prevented the calculation of derivatives. This maximum search can be approximated using 
the softmax function, denoted as sn for the n-th neuron. It can be computed from the 
activations Zl of all neurons as: 

N 
z IT "" Z I IT 

Sn=e n / £..Je 

/=1 (15) 
where a small value for parameter T approximates a crisp maximum selection. Since the 
string n in (14) is always fixed during training and independent of the parameters in ft, 
only the function H(nIY) has to be minimized. This function can also be expressed as 

M N 

H(!2 I Y) = - L L p(y n,!2m ) ·logp(!2m I Y n) 
m=1 n=1 

m=1 n=1 

(16) 

A derivative with respect to a weight Wlj of the neural network yields: 

aH (!21 Y) 
= 

JW/j (17) 

As shown in (Neukirchen, 1996), all the required terms in (17) can be computed 
effectively and it is possible to realize a gradient descend method in order to maximize the 
mutual information of the training data. The great advantage of this method is the fact 
that it is now possible to generalize this algorithm for use in all popular neural network 
architectures, including multilayer and recurrent neural networks. 

4 RESULTS FOR THE HYBRID SYSTEM 

The new hybrid system has been developed and extensively tested using the Resource 
Management 1000 word speaker-independent continuous speech recognition task. First, a 
baseline discrete HMM system has been built up with all well-known features of a 
context-dependent HMM system. The performance of that baseline system is shown in 
column 2 of Table 1. The 1st column shows the performance of the hybrid system with 
the neural vector quantizer. This network has some special features not mentioned in the 
previous sections, e.g. it uses multiple frame input and has been trained on context
dependent classes. That means that the mutual information between the stream of firing 
neurons and the corresponding input stream of triphones has been maximized. In this 
way, the firing behavior of the network becomes sensitive to context-dependent units. 
Therefore, this network may be the only existing context-dependent acoustic processor, 
carrying the principle of triphone modeling from the HMM structure to the acoustic front 
end. It can be seen, that a substantially higher recognition performance is obtained with 
the hybrid system, that compares well with the leading continuous system (HTK, in 
column 3). It is expected, that the system will be further improved in the near future 
through various additional features, including full exploitation of multilayer neural VQ's 
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and several conventional HMM improvements, e.g. the use of crossword triphones. 
Recent results on the larger Wall Street Journal (WSJ) database have shown a 10.5% error 
rate for the hybrid system compared to a 13.4% error rate for a standard discrete system, 
using the 5k vocabulary test with bigram language model of perplexity 110. This error 
rate can be further reduced to 8.9% using crossword triphones and 6.6% with a trigram 
language model. This rate compares already quite favorably with the best continuous 
systems for the same task. It should be noted that this hybrid WSJ system is still in its 
initial stage and the neural component is not yet as sophisticated as in the RM system. 

5 CONCLUSION 

A new neural network paradigm and the resulting hybrid HMMI ANN speech recognition 
system have been presented in this paper. The new approach performs already very well 
and is still perfectible. It gains its good performance from the following facts: (1) The use 
of information theory-based training algorithms for the neural vector quantizer, which can 
be shown to be optimal for the hybrid approach. (2) The possibility of introducing 
context-dependency not only to the HMM's, but also to the neural quantizer. (3) The fact 
that this hybrid approach allows the combination of an optimal neural acoustic processor 
with the most advanced context-dependent HMM system. We will continue to further 
implement various possible improvements for our hybrid speech recognition system. 
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Table 1: Comparison of recognition rates for different speech recognition systems 

RM SI word recognition rate with word pair grammar: correctness (accuracy) 

test set hybrid MMI-NN baseline k-means continuous pdf system 
system VQ system (HTK) 

Feb.'89 96,3 % (95,6 %) 94,3 % (93,6 %) 96,0 % (95,5 %) 

Oct.'89 95,4 % (94,5 %) 93,5 % (92,0 %) 95,4% (94,9 %) 

Feb.'91 96,7 % (95,9 %) 94,4% (93,5 %) 96,6% (96,0 %) 

Sep.'92 93,9 % (92,5 %) 90,7 % (88,9 %) 93,6 % (92,6 %) 

average 95,6 % (94,6 %) 93,2 % (92,0 %) 95,4% (94,7 %) 


