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Abstract 

High frequency foreign exchange data can be decomposed into three 
components: the inventory effect component, the surprise infonnation 
(news) component and the regular infonnation component. The presence 
of the inventory effect and news can make analysis of trends due to the 
diffusion of infonnation (regular information component) difficult. 
We propose a neural-net-based, independent component analysis to sep
arate high frequency foreign exchange data into these three components. 
Our empirical results show that our proposed multi-effect decomposition 
can reveal the intrinsic price behavior. 

1 Introduction 

Tick-by-tick, high frequency foreign exchange rates are extremely noisy and volatile, but 
they are not simply pure random walks (Moody & Wu 1996). The price movements are 
characterized by a number of "stylized facts" ,including the following two properties: 
(1) short tenn, weak oscillations on a time scale of several ticks and (2) erratic occurrence 
of turbulence lasting from minutes to tens of minutes. Property (1) is most likely caused 
by the market makers' inventory effect (O'Hara 1995), and property (2) is due to surprise 
information, such as news, rumors, or major economic announcements. The price changes 
due to property (1) are referred to as the inventory effect component, and the changes due 
to property (2) are referred to as the surprise infonnation component. The price changes 
due to other infonnation is referred to as the regular infonnation component. 

IThis terminology is borrowed from the financial economics literature. For additional properties 
of high frequency foreign exchange price series. see (Guilaumet, Dacorogna. Dave. Muller. Olsen & 
Pictet 1994). 
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Due to the inventory effect, price changes show strong negative correlations on short time 
scales (Moody & Wu 1995). Because of the surprise infonnation effect, distributions of 
price changes are non-nonnal (Mandelbrot 1963). Since both the inventory effect and 
the surprise information effect are short tenn and temporary, their corresponding price 
components are independent of the fundamental price changes. However, their existence 
will seriously affect data analysis and modeling (Moody & Wu 1995). Furthennore, the 
most reliable component of price changes, for forecasting purposes, is the long tenn trend. 
The presence of high frequency oscillations and short periods ofturbulence make it difficult 
to identify and predict the changes in such trends, if they occur. 

In this paper, we propose a novel approach with the following price model: 

q(t) = CIPI(t) + C2P2(t) + C3P3(t) + e(t). (1) 

In this model, q(t) is the observed price series and PI (t), P2(t) and P3(t) correspond 
respectively to the regular infonnation component, the surprise infonnation component and 
the inventory effect component. PI (t), P2 (t) and P3 (t) are mutually independent and may 
individually be either iid or correlated. e(t) is process noise, and c}, C2 and C3 are scale 
constants. Our goal is to find PI (t), p2(t) and P3( t) given q(t). 

The outline of the paper is as follows. We describe our approach for multi-effect decompo
sition in Section 2. In Section 3, we analyze the decomposed price components obtained 
for the high frequency foreign exchange rates and characterize their stochastic properties. 
We conclude and discuss the potential applications of our multi-effect decomposition in 
Section 4. 

2 Multi-effect Decomposition 

2.1 Independent Source Separation 

The task of decomposing the observed price quotes into a regular infonnation component, 
a surprise infonnation component and an inventory effect component can be exactly fitted 
into the framework of independent source separation. Independent source separation can 
be described as follows: 

Assume that X = {Xi, i = 1, 2, ... , n} are the sensor outputs which 
are some superposition of unknown independent sources S = {Si' i = 
1, 2, ... , m }. The task of independent source separation is to find a 
mapping Y = f (X), so that Y ~ AS, where A is an m x m matrix in 
which each row and column contains only one non-zero element. 

Approaches to separate statistically-independent components in the inputs include 

• Blind source separation (Jutten & Herault 1991), 

• Infonnation maximization (Linsker 1989), (Bell & Sejnowski 1995), 

• Independent component analysis, (Comon 1994), (Amari, Cichocki & Yang 1996), 

• Factorial coding (Barlow 1961). 

All of these approaches can be implemented by artificial neural networks. The network 
architectures can be linear or nonlinear, multi-layer perceptrons, recurrent networks or other 
context sensitive networks (pearlmutter & Parra 1997). We can choose a training criterion 
to minimize the energy in the output units, to maximize the infonnation transferred in 
the network, to reduce the redundancies between the outputs, or to use the Edgeworth 
expansion or Gram-Charlier expansion of a probability distribution, which leads to an 
analytic expression of the entropy in tenns of measurable higher order cumulants. 
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Figure 1: System diagram of multi-effect decomposition for high frequency foreign ex
change rates. q(t) are original price quotes, ri(t) are the reference inputs, and Pie t) are the 
decomposed components. 

For our price decomposition problem, the non-Gaussian nature of price series requires that 
the transfer function of the decomposition system be nonlinear. In general, the nonlinearities 
in the transfer function are able to pick up higher order moments of the input distributions 
and perfonn higher order statistical redundancy reduction between outputs. 

2.2 Reference input selection 

In traditional approaches to blind source separation, nothing is assumed to be known about 
the inputs, and the systems adapt on-line and without a supervisor. This works only if the 
number of sensors is not less than the number of independent sources. If the number of 
sensors is less than that of sources, the sources can, in theory, be separated into disjoint 
groups (Cao & Liu 1996). However, the problem is ill-conditioned for most of the above 
practical approaches which only consider the case where the number of sensors is equal to 
the number of sources. 

In our task to decompose the multiple components of price quotes, the problem can be 
divided into two cases. If the prices are sampled at regular intervals, we can use price 
quotes observed in different markets, and have the number of sensors be equal to the 
number of price components. However, in the high frequency markets, the price quotes 
are not regularly spaced in time. Price quotes from different markets will not appear at the 
same time, so we cannot apply the price quotes from different markets to the system. In 
this case, other reference inputs are needed. 

Motivated by the use of reference inputs for noise canceling (Widrow, Glover, McCool, 
Kaunitz, Williams, Heam, Zeidler, Dong & Goodlin 1975), we generate three reference 
inputs from original price quotes. They are the estimates of the three desired components. 
In the following, we briefly describe our procedure for generating the reference inputs. 

By modeling the price quotes using a "True Price" state space model (Moody & Wu 1996) 

q(t) = rl (t) + r3(t) , (2) 

where rl (t) is an estimate of the infonnation component (True Price) and r3( t) is an estimate 
of the inventory effect component (additive noise), and by assuming that the True Price 
rl (t) is a fractional Brownian motion (Mandelbrot & Van Ness 1968), we can estimate 
rl (t) and r3 (t) with given q( t), (Moody & Wu 1996), as 

(3) 
m,n 

(4) 
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Figure 2: Multi-effect decompositions for two segments of the DEMIUSD (log prices) 
extracted from September 1995. The three panels in each segment display the observed 
prices (the dotted curve in upper panel), the regular information component (solid curve 
in upper panel), the surprise information component (mid panel) and the inventory effect 
component (lower panel). 

where t/!::'(t) is an orthogonal wavelet function, Q::' is the coefficient of the wavelet 
transform of q(t), m is the index of the scales and n is the time index of the components in 
the wavelet transfer, S(m,B) is a smoothing function, and its parameters can be estimated 
using the EM algorithm (Womell & Oppenheim 1992). 

We then estimate the surprise information component as the residual between the informa
tion component and its moving average: 

r2(t) = r}(t) - set) 

set) is an exponential moving average of rl(t) and 

set) = (1 + a)rl(t) - as(t - 1) 

(5) 

(6) 

where a is a factor. Although it can be optimized based on the training data, we set 
a = -0.9 in our current work. 

Our system diagram for multi-effect decomposition is shown in Figure 1. Using multi
scale decomposition Eqn(3) and smoothing techniques Eqn(6), we obtain three reference 
inputs. We can then separate the reference inputs into three independent components via 
independent component analysis using an artificial neural network. Figure 2 presents multi
effect decompositions for two segments of the DEMIUSD rates. The first segment contains 
some impulses, and the corresponding surprise information component is able to catch 
such volatile movements. The second segment is basically down trending, so its surprise 
information component is comparatively flat. 

3 Empirical Analysis 

3.1 Mutually Independent Analysis 

Mutual independence of the variables is satisfied if the joint probability density function 
equals the product of the marginal densities, or equivalently, the characteristic function 
splits into the sum of marginal characteristic functions: g(X) = E7=1 gi(Xi). Taking the 
Taylor expansion of both sides of the above equation, products between different variables 
Xi in the left-hand side must be zero since there are no such terms in the right-hand side. 
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Table 1: Comparisons between the correlation coefficients p (nonnalized) and the cross
cumulants r (unnonnalized) of order 4 before and after independent component analysis 
(lCA). The DEMIUSD quotes for September 1995 is divided into 147 sub-sets of 1024 
ticks. The results presented here are the median values. The last column is the absolute 
ratio of before ICA and after ICA. We note that all ratios are greater than I, indicating that 
after ICA, the components become more independent. 

Components Cross- Before After 
pairs Cumulants ICA ICA 

P12 0.56 0.14 
r13 2.7e-14 7.8e-17 

Pl(t) "" P2(t) r 22 -5.6e-15 9.2e-16 
r31 2.0e-11 1.3e-13 
P13 0.15 0.03 
r13 2.le-15 1.6e-17 

pl(t) "" P3(t) r22 -2.0e-15 -4.5e-16 
r31 5.ge-12 6.ge-14 
P23 0.17 0.04 
r13 9.le-16 -5.0e-19 

P2(t) "" P3(t) r22 1.2e-15 4.ge-17 
r 31 3.6e-15 3.0e-17 

We observe the cross-cumulants of order 4: 

r13 M13 - 3M2oMll 
r 22 = M22 - M20M02 - 2M?1 
r 31 = M31 - 3M02Mll 

Absolute 
ratio 

4.1 
342.2 

6.0 
148.5 

4.7 
128.9 

4.5 
84.5 
4.3 

1806.0 
24.3 

119.6 

(7) 

(8) 
(9) 

where M lei = E { x~ x~} denote the moments of order k + I. If x i and x j are independent, 
then their cross-cumulants must be zero (Comon 1994). Table I compares the cross
cumulants before and after independent component analysis (ICA) for the DEMIUSD in 
September 1995. For reference, the correlation coefficients before and after ICA are also 
listed in the table. We see that after ICA, the components have become less correlated and 
thus more independent. 

3.2 Autocorrelation Analysis 

Figure 3 depicts the autocorrelation functions of the changes in individual components 
and compares them to the original returns. We compute the short-run autocorrelations for 
the lags up to 50. Figure 3 gives the means and standard deviations for September 1995. 
From the figure, we can see that both the inventory effect component and the original 
returns show very similar autocorrelation functions, which are dominated by the significant 
negative, first-order autocorrelations. The mean values for the other orders are basically 
equal to zero. The autocorrelations of the regular information component and the surprise 
information component show positive correlations except at first order. These non-zero 
autocorrelations are hidden by noise in the original series. The autocorrelation function 
of the surprise information component decays faster than that of the regular information 
component. On average, it is below the 95% confidence band for lags larger than 20 ticks. 

The above autocorrelation analysis suggests the following. (I) Price changes due to the 
information effects are slightly trending on tick-by-tick time scales. The trend in the surprise 
information component is shorter term than that in the regular information component. 
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Figure 3: Comparison of autocorrelation functions of the changes in the original observed 
prices (the upper-left panel), the inventory effect component (the lower-left panel), the regu
lar information component (the upper-right panel) and the surprise infonnation component 
(the lower-right panel). The results presented are means and standard deviations, and the 
horizontal dotted lines represent the 95% confidence band. The DEMIUSD in September 
1995 is divided into 293 sub-sets of 1024 ticks with overlapping of 512 ticks. 

(2) The autocorrelation function of original returns reflects only the price changes due to 
the inventory effect. This further confirms that the existence of short tenn memory can 
mislead the analysis of dependence on longer time scales. Subsequently, we can see the 
usefulness of the multi-effect decomposition. Our empirical results should be viewed as 
preliminary, since they may depend upon the choice of True Price model. Additional 
studies are ongoing. 

4 Conclusion and Discussion 

We have developed a neural-net-based independent component analysis (ICA) for the 
multi-effect decomposition of high frequency financial data. Empirical results with foreign 
exchange rates have demonstrated that the decomposed components are mutually indepen
dent. The obtained regular infonnation component has recovered the trending behavior of 
the intrinsic price movements. 

Potential applications for multi-effect decompositions include: 
(1) outlier detection and filtering: Filtering techniques for removing various noisy effects 
and identifYing long tenn trends have been widely studied (see for example Assimakopou
los (1995». MuIti-effect decompositions provide us with an alternative approach. As 
demonstrated in Section 3, the regular infonnation component can, in most cases, catch 
relatively stable and longer tenn trends originally embedded in the price quotes. 
(2) devolatilization: Price series are heteroscedastic (Boilers lev, Chou & Kroner 1992). 
Devolatilization has been widely studied (see, for example, Zhou (1995». The regular 
infonnation component obtained from our multi-effect decomposition appears less volatile, 
and furthennore, its volatility changes more smoothly compared to the original prices. 
(3) mixture of local experts modeling: In most cases, one might be interested in only stable, 
long tenn trends of price movements. However, the surprise infonnation and inventory ef
fect components are not totally useless. By decomposing the price series into three mutually 
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independent components, the prices can be modeled by a mixture of local experts (Jacobs, 
Jordan & Barto 1990), and better modeling perfonnances can be expected. 
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