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Abstract 

Results of a study of the worst case learning curves for a partic
ular class of probability distribution on input space to MLP with 
hard threshold hidden units are presented. It is shown in partic
ular, that in the thermodynamic limit for scaling by the number 
of connections to the first hidden layer, although the true learning 
curve behaves as ~ a-I for a ~ 1, its VC-dimension based bound 
is trivial (= 1) and its VC-entropy bound is trivial for a ::; 6.2. It 
is also shown that bounds following the true learning curve can be 
derived from a formalism based on the density of error patterns. 

1 Introduction 

The VC-formalism and its extensions link the generalisation capabilities of a binary 
valued neural network with its counting function l , e.g. via upper bounds implied by 
VC-dimension or VC-entropy on this function [17, 18]. For linear perceptrons the 
counting function is constant for almost every selection of a fixed number of input 
samples [2], and essentially equal to its upper bound determined by VC-dimension 
and Sauer's Lemma. However, in the case for multilayer perceptrons (MLP) the 
counting function depends essentially on the selected input samples. For instance, 
it has been shown recently that for MLP with sigmoidal units although the largest 
number of input samples which can be shattered, Le. VC-dimension, equals O(w2 ) 

[6], there is always a non-zero probability of finding a (2w + 2)-element input sample 
which cannot be shattered, where w is the number of weights in the network [16]. 
In the case of MLP using Heaviside rather than sigmoidal activations (McCulloch
Pitts neurons), a similar claim can be made: VC-dimension is O(wl1og21lt} [13, 15], 

1 Known also as the partition function in computational learning theory. 
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where WI is the number of weights to the first hidden layer of 11.1 units, but there is 
a non-zero probability of finding a sample of size WI + 2 which cannot be shattered 
[7, 8]. The results on these "hard to shatter samples" for the two MLP types 
differ significantly in terms of techniques used for derivation. For the sigmoidal 
case the result is "existential" (based on recent advances in "model theory") while 
in the Heaviside case the proofs are constructive, defining a class of probability 
distributions from which "hard to shatter" samples can be drawn randomly; the 
results in this case are also more explicit in that a form for the counting function 
may be given [7, 8]. 

Can the existence of such hard to shatter samples be essential for generalisation 
capabilities of MLP? Can they be an essential factor for improvement of theoretical 
models of generalisation? In this paper we show that at least for the McCulloch
Pitts case with specific (continuous) probability distributions on the input space 
the answer is "yes". We estimate "directly" the real learning curve in this case and 
show that its bounds based on VC-dimension or VC-entropy are loose at low learning 
sample regimes (for training samples having less than 12 x WI examples) even for 
the linear perceptron. We also show that a modification to the VC-formalism given 
in [9, 10] provides a significantly better bound. This latter part is a more rigorous 
and formal extension and re-interpretation of some results in [11, 12]. All the results 
are presented in the thermodynamic limit, i.e. for MLP with WI ~ 00 and training 
sample size increasing proportionally, which simplifies their mathematical form. 

2 Overview of the formalism 

On a sample space X we consider a class H of binary functions h : X ~ {a, 1} 
which we shall call a hypothesis space. Further we assume that there are given a 
probability distribution jJ on X and a target concept t : X ~ {a, 1}. The quadruple 
C = (X, jJ, H, t) will be called a learning system. 

In the usual way, with each hypothesis h E H we associate the generalization error 

fh d~ Ex [It(x) - h(x)l] and the training error fh,x d~ ~ L:~l It(Xi) - h(xdl for 
any training m-sample x = (Xl, ... ,xm) E xm. 
Given a learning threshold ° ~ ,X ~ 1, let us introduce an auxiliary random variable 

f~ax(X) d~ max{fh ; h E H & fh,x ~ ,X} for x E xm, giving the worst general
ization error of all hypotheses with training error ~ ,X on the m-sample x E xm. 2 

The basic objects of intE'rest in this paper are the learning cUnJe3 defined as 

tL>C( ) d!l E [ max ( ... )] f). m - Xm f). X. 

2.1 Thermodynamic limit 

Now we introduce the thermodynamic limit of the learning curve. The underly
ing idea of such asymptotic analysis is to capture the essential features of learning 

2In this paper max(S), where S C R, denotes the maximal element in the closure of S, 
or 00 if no such element exists. Similarly, we understand mineS). 

3Note that our learning curve is determined by the worst generalisation error of accept
able hypotheses and in this respect differs from "average generalisation error" learning 
curves considered elsewhere, e.g. [3, 5]. 
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systems of very large size. Mathematically it turns out that in the thermodynamic 
limit the functional forms of learning curves simplify significantly and analytic char
acterizations of these are possible. 

We are given a sequence of learning systems, or shortly, LN = (XN,/J.N,HN,tN)' 
N = 1,2, ... and a scaling N f-7 TN E R+, with the property TN ~ 00; the scaling 
can be thought of as a measure of the size (complexity) of a learning system, e.g. 
VC-dimension of HN. The thermodynamic limit of scaled learning curves is defined 
for a > ° as follows 4 

we ( ) de! l' we (L J) €AOO a = 1m sup €A,N aTN , 
N--+oo 

(1) 

Here, and below, the additional subscript N refers to the N-th learning system. 

2.2 Error pattern density formalism 

This subsection briefly presents a thermodynamic version of a modified VC formal
ism discussed previously in [9J; more details and proofs can be found in [1OJ. The 
main innovation of this approach comes from splitting error patterns into error shells 
and using estimates on the size of these error shells rather than the total number 
of error patterns. We shall see on examples discussed in the following section that 
this improves results significantly. 

The space {O, l}m of all binary m-vectors naturally splits into m + 1 error pattern 
shells Ern, i = 0,1, ... , m, with the i-th shell composed of all vectors with exactly i 
entries equal to 1 . For each h E Hand i = (Xl, ... ,Xm ) E X m , let vh(i) E {O,l}m 
denote a vector (error pattern) having 1 in the j-th position if and only if h(xj) :j:. 
t(Xj). As the i-th error shell has en elements, the average error pattern density 
falling into this error shell is 

(i = 0,1, ... ,m), (2) 

where # denotes the cardinality of a set5 . 

Theorem 1 Given a sequence of learning systems LN = (XN, /J.N, HN, tN), a scal
ing TN and a function 'P : R+ X (0, 1) ~ R+ such that 

In (dfN) ~ -TN'P (m ,i) + O(TN), 
, TN m 

for all m,N = 1,2, ... , ° ~ i ~ m. 

Then 

(3) 

(4) 

4We recall that lxJ denotes the largest integer $ x and limsuPN-+oo XN is defined as 
limN-+oo of the monotonic sequence N 1--+ max{xl' X2, ••• , XN}' Note that in contrast to 
the ordinary limit, lim sup always exists. 

5Note the difference to the concept of error shells used in [4] which are partitions of the 
finite hypothesis space H according to the generalisation error values. Both formalisms 
are related though, and the central result in [4], Theorem 4, can be derived from our 
Theorem 1 below. 
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for any ° :s A :s 1 and a, /3 > 0, where 

de! { ( y + /3X ) } f>.,6(a) = max f E (0,1) ; 3 0 ::;y::;>. a(1i(y) + /31i(x)) - rp a + a/3, 1 /3 ~ ° 
t::;x::;1 + 

and 1i(y) d~ -y In y - (1 - y) In(l - y) denotes the entropy function. 

3 Main results : applications of the formalism 

3.1 VC-bounds 

We consider a learning sequence L N = (X N , J.L N , H N , t N), t N E H N (realisable 
case) and the scaling of this sequence by VC-dimension [17], i.e. we assume TN = 
dvc(HN) -+ 00. The following bounds for the N-th learning system can be derived 
for A = ° (consistent learning case) [1, 17]: 

fwe (m) < O,N 
. 2-mt/2 em ;

.1 ( (2) dVc(HN») 
° mm 1,2 dvc(HN) df. 

In the thermodynamic limit, i.e. as N -+ 00, we get for any a > lie 

fg'~(a) . (1 210g2 (2ea)) < mIn , , - a 

Note that this bound is independent of probability distributions J.LN. 

3.2 Piecewise constant functions 

(5) 

(6) 

Let PC(d) denote the class of piecewise constant binary functions on the unit 
segment [0,1) with up to d ~ ° discontinuities and with their values defined as 
1 at all these discontinuity points. We consider here the learning sequence LN = 
([0,1), J.LN, PC(dN), tN) where J.LN is any continuous probability distributions on 
[0,1), dN is a monotonic sequence of positive integers diverging to 00 and targets 

tN E PC(dt N ) are such that the limit c5t d~ limN-+oo .!!.I:Ldd exists. (Without loss of 
tN 

generality we can assume that all J.LN are the uniform distribution on [0,1).) 

For this learning sequence the following can be established. 

Claim 1. The following function defined for a > 1 and ° :s x :s 1 as 

rp(a, x) d~ -a(l-x)1i (2;(t~X») -ax1i (~~~) +a1i(x) for2ax(1-x) > 1, 

and as 0, otherwise, satisfies assumption (3) with respect to the scaling TN d;! dN. 

Claim 2. The following two sided bound on the learning curve holds: 

(7) 
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We outline the main steps of proof of these two claims now. 

For Claim 1 we start with a combinatorial argument establishing that in the par
ticular case of constant target 

{ ( ':1'-1) -1 "'~N /2 (m-:-i-l) (i~l) for d + dt < min(2i, 2(m - i)), 
tl,"!lN = ,-1 L...J)=O )-1 ) 

" 1 otherwise. 

Next we observe that that the above sum equals 

This easily gives Claim 1 for constant target (tSt = 0). Now we observe that this 
particular case gives an upper bound for the general case (of non-constant target) 
if we use the "effective" number of discontinuities dN + dtN instead of dN. 

For Claim 2 we start with the estimate [12, 11] 

derived from the Mauldon result [14] for the constant target tN = canst, m ~ dN. 
This implies immediately the expression 

€o~(a) = -..!.. (1 + In(2a)) . 
2a 

(8) 

for the constant target, which extends to the estimate (7) with a straightforward 
lower and upper bound on the "effective" number of discontinuities in the case of a 
non-constant target. 

3.3 Link to multilayer perceptron 

Let MLpn(wd denote the class offunction from R n to {O, I} which can be imple
mented by a multilayer perceptron (feedforward neural network) with ~ 1 number 
of hidden layers, with Wt connections to the first hidden layer and the first hidden 
layer composed entirely of fully connected, linear threshold logic units (i.e. units 
able to implement any mapping of the form (Xl, .. , Xn) f-t O(ao + L~l aixi) for 
ai E R). It can be shown from the properties of Vandermonde determinant (c.f. 
[7, 8]) that if 1 : [0,1) -+ R n is a mapping with coordinates composed of linearly 
independent polynomials (generic situation) of degree::; n, then 

(9) 

This implies immediately that all results for learning the class of PC functions in 
Section 5.2 are applicable (with obvious modifications) to this class of multilayer 
perceptrons with probability distribution concentrated on the I-dimensional curves 
of the form 1([0,1)) with 1 as above. 

However, we can go a step further. We can extend such a distribution to a con
tinuous distribution on R n with support "sufficiently close" to the curve 1([0,1)), 
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Figure 1: Plots of different estimates for thermodynamic limit of learning curves for 
the sequence of multilayer perceptrons as in Claim 3 for consistent learning (A = 0). 
Estimates on true learning curve from (7) are for 8t = 0 ('TCO') and 8t = 0.2 ('TC+' 
and 'TC-' for the upper and lower bound, respectively) . Two upper bounds of the 
form (4) from the modified VC-formalism for r.p as in Claim 1 and f3 = 1 are plotted 
for 8t = 0.0 and 8t = 0.2 (marked EPD). For comparison, we plot also the bound 
(10) based on the VC-entropy; VC bound (5) being trivial for this scaling, = 1, c.f. 
Corollary 2, is not shown. 

with changes to the error pattern densities /)/fN, the learning curves, etc., as small 
as desired. This observa.tion implies the follo~ing result: 

Claim 3 For any sequence of multilayer perceptrons, M LpnN (WIN), WIN ~ 
00, there exists a sequence of continuous probability distributions J.1.N on 
R nN with properties as follows. For any sequence of targets tN E 
M LpnN (WltN)' both Claim 1 and Claim 2 of Section 3.2 hold for the learn-

ing sequence (RnN, J.1.N, M LpnN (WIN), tN) with scaling TN d~ nIN and 8t = 
limN-+oo WltN IWIN. In particular bound (4) on the learning curve holds for r.p 
as in Claim 1. 

Corollary 2 If additionally the number of units in first hidden layer 1llN ~ 00, 

then the thermodynamic limit of VC-bound (5) with respect to the scaling TN = 
WIN is trivial, i.e. = 1 for all a > O. 

Proof. The bound (5) is trivial for m ~ 12dN, where dN d~ dvc(M LpnN (WltN )). 
As dN = O(WIN IOg2(1lIN)) [13, 15] for any continuous probability on the input 
space, this bound is trivial for any a = ~ < 12..4H... ~ 00 if N ~ 00. 0 

tt'lN - WIN 

There is a possibility that VC dimension based bounds are applicable but fail to cap
ture the true behavior because of their independence from the distribution. One op
tion to remedy the situation is to try a distribution-specific estimate such as VC en
tropy (i.e. the expectation of the logarithm of the counting function IIN(XI, ... , xm) 
which is the number of dichotomies realised by the perceptron for the m-tuple 
of input points [18]) . However, in our case, lIN (Xl , ... , xm) has the lower bound 
2 ",min(wlN/2 m-l) (m) £, • l' . h' h' . all h L."i=O ' i ' or Xl, ... , Xm m genera pOSItIOn, w IC IS VIrtu y t e ex-
pression from Sauer's lemma with VC-dimension replaced by WIN 12. Thus using 
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VC entropy instead of VC dimension (and Sauer's Lemma) we cannot hope for 
a better result than bounds of the form (5) with WlN 12 replacing VC-dimension 
resulting in the bound 

(0 > lie) (10) 

in the thermodynamic limit with respect to the scaling TN = WlN. (Note that 
more "optimistic" VC entropy based bounds can be obtained if prior distribution 
on hypothesis space is given and taken into account [3].) 

The plots of learning curves are shown in Figure l. 
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