Worst-case Loss Bounds
for Single Neurons

David P. Helmbold Jyrki Kivinen
Department of Computer Science Department of Computer Science
University of California, Santa Cruz P.O. Box 26 (Teollisuuskatu 23)
Santa Cruz, CA 95064 FIN-00014 University of Helsinki
USA Finland

Manfred K. Warmuth
Department of Computer Science
University of California, Santa Cruz
Santa Cruz, CA 95064
USA

Abstract

We analyze and compare the well-known Gradient Descent algo-
rithm and a new algorithm, called the Exponentiated Gradient
algorithm, for training a single neuron with an arbitrary transfer
function. Both algorithms are easily generalized to larger neural
networks, and the generalization of Gradient Descent is the stan-
dard back-propagation algorithm. In this paper we prove worst-
case loss bounds for both algorithms in the single neuron case.
Since local minima make it difficult to prove worst-case bounds
for gradient-based algorithms, we must use a loss function that
prevents the formation of spurious local minima. We define such
a matching loss function for any strictly increasing differentiable
transfer function and prove worst-case loss bound for any such
transfer function and its corresponding matching loss. For exam-
ple, the matching loss for the identity function is the square loss
and the matching loss for the logistic sigmoid is the entropic loss.
The different structure of the bounds for the two algorithms indi-
cates that the new algorithm out-performs Gradient Descent when
the inputs contain a large number of irrelevant components.

310 D. P. HELMBOLD, J. KIVINEN, M. K. WARMUTH

1 INTRODUCTION

The basic element of a neural network, a neuron, takes in a number of real-valued
input variables and produces a real-valued output. The input-output mapping of
a neuron is defined by a weight vector w € RN, where N is the number of input
variables, and a transfer function ¢. When presented with input given by a vector
x € RV, the neuron produces the output § = ¢(w - x). Thus, the weight vector
regulates the influence of each input variable on the output, and the transfer function
can produce nonlinearities into the input-output mapping. In particular, when the
transfer function is the commonly used logistic function, ¢(p) = 1/(1 + e~?), the
outputs are bounded between 0 and 1. On the other hand, if the outputs should
be unbounded, it is often convenient to use the identity function as the transfer
function, in which case the neuron simply computes a linear mapping. In this
paper we consider a large class of transfer functions that includes both the logistic
function and the identity function, but not discontinuous (e.g. step) functions.

The goal of learning is to come up with a weight vector w that produces a
desirable input-output mapping. This is achieved by considering a sequence
S = ((x1,%1),---,(xe,ye)) of ezamples, where for t = 1,...,¢ the value y; € R
is the desired output for the input vector x;, possibly distorted by noise or other
errors. We call x; the {th instance and y; the tth outcome. In what is often called
batch learning, all £ examples are given at once and are available during the whole
training session. As noise and other problems often make it impossible to find a
weight vector w that would satisfy ¢(w -x;) = y; for all ¢, one instead introduces a
loss function L, such as the square loss given by L(y,§) = (y — §)?/2, and finds a
weight vector w that minimizes the empirical loss (or training error)

Loss(w,S) = > L(ye, (W - x¢)) . (1)

t=1

With the square loss and identity transfer function ¢(p) = p, this is the well-known
linear regression problem. When ¢ is the logistic function and L is the entropic loss
given by L(y,9) = yIn(y/9) + (1 — y)In((1 — y)/(1 — §)), this can be seen as a
special case of logistic regression. (With the entropic loss, we assume 0 < y;, 9 < 1
for all £, and use the convention 01n0 = 01n(0/0) = 0.)

In this paper we use an on-line prediction (or life-long learning) approach to the
learning problem. It is well known that on-line performance is closely related to
batch learning performance (Littlestone, 1989; Kivinen and Warmuth, 1994).
Instead of receiving all the examples at once, the training algorithm begins with
some fixed start vector wy, and produces a sequence wy, . .., wey of weight vectors.
The new weight vector w;4, is obtained by applying a simple update rule to the
previous weight vector w; and the single example (x;, y:). In the on-line prediction
model, the algorithm uses its {th weight vector, or hypothesis, to make the prediction
Ut = ¢(W: - x;). The training algorithm is then charged a loss L(y:, §:) for this tth
trial. The performance of a training algorithm A that produces the weight vectors
w; on an example sequence S is measured by its total (cumulative) loss

¢
Loss(4, S) = Z L(yt, (Wi - xz)) . (2)

Our main results are bounds on the cumulative losses for two on-line prediction
algorithms. One of these is the standard Gradient Descent (GD) algorithm. The

other one, which we call EG¥, is also based on the gradient but uses it in a different

Worst-case Loss Bounds for Single Neurons 311

manner than GD. The bounds are derived in a worst-case setting: we make no as-
sumptions about how the instances are distributed or the relationship between each
instance x; and its corresponding outcome y;. Obviously, some assumptions are
needed in order to obtain meaningful bounds The approach we take is to compare
the total losses, Loss(GD, S) and Loss(EG* ,S), to the least achievable empirical
loss, infw Loss(w, S). If the least achievable empmcaJ loss is high, the dependence
between the instances and outcomes in S cannot be tracked by any neuron using
the transfer function, so it is reasonable that the losses of the algorithms are also
high. More interestingly, if some weight vector achieves a low empirical loss, we
also require that the losses of the algorithms are low. Hence, although the algo-
rithms always predict based on an initial segment of the example sequence, they
must perform almost as well as the best fixed weight vector for the whole sequence.

The choice of loss function is crucial for the results that we prove. In particular,
since we are using gradient-based algorithms, the empirical loss should not have spu-
rious local minima. This can be achieved for any differentiable increasing transfer
function ¢ by using the loss function L, defined by

¢~ (9)

Lw)= [66)-vd: . 3)

For y < § the value Ly(y,#) is the area in the z X ¢(z) plane below the function
#(z), above the line ¢(z) = y, and to the left of the line z = ¢~1(§). We call L the
matching loss function for transfer function ¢, and will show that for any example
sequence S, if L = Ly then the mapping from w to Loss(w,S) is convex. For
example, if the transfer function is the logistic function, the matching loss function
is the entropic loss, and if the transfer function is the identity function, the matching
loss function is the square loss. Note that using the logistic activation function with
the square loss can lead to a very large number of local minima (Auer et al., 1996).
Even in the batch setting there are reasons to use the entropic loss with the logistic
transfer function (see, for example, Solla et al., 1988).

How much our bounds on the losses of the two algorithms exceed the least empirical
loss depends on the maximum slope of the transfer function we use. More impor-
tantly, they depend on various norms of the instances and the vector w for which
the least empirical loss is achieved. As one might expect, nelther of the algorithms
is uniformly better than the other. Interestingly, the new EG¥ algorithm is better
when most of the input variables are irrelevant, i.e., when some weight vector w
with w; = 0 for most indices 7 has a low empirical loss. On the other hand, the
GD algorithm is better when the weight vectors with low empirical loss have many
nonzero components, but the instances contain many zero components.

The bounds we derive concern only single neurons, and one often combines a number
of neurons into a multilayer feedforward neural network. In particular, applying
the Gradient Descent algorithm in the multilayer setting gives the famous back
propagation algorithm. Also the EG* algorithm, being gradient-based, can easily
be generalized for multilayer feedforward networks. Although it seems unlikely
that our loss bounds will generalize to multilayer networks, we believe that the
intuition gained from the single neuron case will provide useful insight into the
relat.we performance of the two algorithms in the multilayer case. Furthermore, the
EG¥ algorithm is less sensitive to large numbers of irrelevant attributes. Thus it
might be possible to avoid multilayer networks by introducing many new inputs,
each of which is a non-linear function of the original inputs. Multilayer networks
remain an interesting area for future study.

Our work follows the path opened by Littlestone (1988) with his work on learning

312 D. P. HELMBOLD, J. KIVINEN, M. K. WARMUTH

thresholded neurons with sparse weight vectors. More immediately, this paper is
preceded by results on linear neurons using the identity transfer function (Cesa-
Bianchi et al., 1996; Kivinen and Warmuth, 1994).

2 THE ALGORITHMS

This section describes how the Gradient Descent training algorithm and the new
Exponentiated Gradient training algorithm update the neuron’s weight vector.

For the remainder of this paper, we assume that the transfer function ¢ is increasing
and differentiable, and Z is a constant such that ¢'(p) < Z holds for all p € R. For
the loss function Ly defined by (3) we have

OLg(y, (W - x))
Ow;

Treating L¢(y, ¢(w-x)) for fixed x and y as a function of w, we see that the Hessian
H of the function is given by H;; = ¢'(w-x)z;z;. Then vIHv = ¢'(w-x)(v-x)?, so
H is positive definite. Hence, for an arbitrary fixed S, the empirical loss Loss(w, S)
defined in (1) as a function of w 1s convex and thus has no spurious local minima.

We first describe the Gradient Descent (GD) algorithm, which for multilayer net-
works leads to the back-propagation algorithm. Recall that the algorithm’s predic-
tion at trial ¢ is gy = ¢(w; - x:), where w; is the current weight vector and x; is
the input vector. By (4), performing gradient descent in weight space on the loss
incurred in a single trial leads to the update rule

= (¢(w-x) —y)z; . (4)

W1 = Wi — (% — Ye)Xt .

The parameter 7 is a positive learning rate that multiplies the gradient of the loss
function with respect to the weight vector w;. In order to obtain worst-case loss
bounds, we must carefully choose the learning rate 5. Note that the weight vector
w; of GD always satisfies w; = w; + E:;} a;x; for some scalar coefficients a;.
Typically, one uses the zero initial vector w; = 0.

A more recent training algorithm, called the Exponentiated Gradient (EG) algo-
rithm (Kivinen and Warmuth, 1994), uses the same gradient in a different way. This
algorithm makes multiplicative (rather than additive) changes to the weight vector,
and the gradient appears in the exponent. The basic version of the EG algorithm
also normalizes the weight vector, so the update is given by

N
w!_’_ll‘v:wt".e-ﬂ(s‘t—s‘t)z!.-/ 2 wt,je*—ﬂ(yc—yt)zt.j .

j=1

The start vector is usually chosen to be uniform, w; = (1/N,...,1/N). Notice that
it 1s the logarithms of the weights produced by the EG training algorithm (rather
than the weights themselves) that are essentially linear combinations of the past
examples. As can be seen from the update, the EG algorithm maintains the con-
straints w;; > 0 and) ; wy; = 1. In general, of course, we do not expect that such
constraints are useful. Hence, we introduce a modified algorithm EG* by employin

a linear transformation of the inputs. In addition to the learning rate 5, the EG

algorithm has a scaling factor U > 0 as a parameter. We define the behavior of
EG* on a sequence of examples S = ((x1,%1), .- ., (¢, %)) in terms of the EG al-
gorithm’s behavior on a transformed example sequence S’ = ((x},y1), ..., (X}, %))

