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Abstract

Most current methods for prediction of protein secondary structure
use a small window of the protein sequence to predict the structure
of the central amino acid. We describe a new method for prediction
of the non-local structure called 3-sheet, which consists of two or
more [-strands that are connected by hydrogen bonds. Since -
strands are often widely separated in the protein chain, a network
with two windows is introduced. After training on a set of proteins
the network predicts the sheets well, but there are many false pos-
itives. By using a global energy function the S-sheet prediction is
combined with a local prediction of the three secondary structures
a-helix, f-strand and coil. The energy function is minimized using
simulated annealing to give a final prediction.

1 INTRODUCTION

Proteins are long sequences of amino acids. There are 20 different amino acids with
varying chemical properties, e.g., some are hydrophobic (dislikes water) and some
are hydrophilic [1]. It is convenient to represent each amino acid by a letter and
the sequence of amino acids in a protein (the primary structure) can be written as
a string with a typical length of 100 to 500 letters. A protein chain folds back on
itself, and the resulting 3D structure (the tertiary siructure) is highly correlated to
the function of the protein. The prediction of the 3D structure from the primary
structure is one of the long-standing unsolved problems in molecular biology. As
an important step on the way a lot of work has been devoted to predicting the
local conformation of the protein chain, which is called the secondary structure.
Neural network methods are currently the most successful for predicting secondary
structure. The approach was pioneered by Qian and Sejnowski [2] and Bohr et al.
[3], but later extended in various ways, see e.g. [4] for an overview. In most of this
work, only the two regular secondary structure elements a-helix and f-strand are
being distinguished, and everything else is labeled coil. Thus, the methods based
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Figure 1: Left: Anti-parallel -sheet. The vertical lines correspond to the backbone
of the protein. An amino acid consists of N-C,—C and a side chain on the C, that
is not shown (the 20 amino acids are distinguished by different side chains). In the
anti-parallel sheet the directions of the strands alternate, which is here indicated
quite explicitly by showing the middle strand up-side down. The H-bonds between
the strands are shown by ji|. A sheet has two or more strands, here the anti-
parallel sheet is shown with three strands. Right: Parallel §-sheet consisting of two
strands.

on a local window of amino acids give a three-state prediction of the secondary
structure of the central amino acid in the window.

Current predictions of secondary structure based on single sequences as input have
accuracies of about 65-66%. It is widely believed that this accuracy is close to
the limit of what can be done from a local window (using only single sequences as
input) [5], because interactions between amino acids far apart in the protein chain
are important to the structure. A good example of such non-local interactions
are the -sheets consisting of two or more [3-strands interconnected by H-bonds,
see fig. 1. Often the [-strands in a sheet are widely separated in the sequence,
implying that only part of the available sequence information about a -sheet can
be contained in a window of, say, 13 amino acids. This is one of the reasons why the
accuracy of f-strand predictions are generally lower than the accuracy of a-helix
predictions. The aim of this work is to improve prediction of secondary structures
by combining local predictions of a-helix, #-strand and coil with a non-local method
predicting [-sheets.

Other work along the same directions include [6] in which §-sheet predictions are
done by linear methods and [7] where a so-called density network is applied to the
problem.

2 A NEURAL NETWORK WITH TWO WINDOWS

We aim at capturing correlations in the B-sheets by using a neural network with
two windows, see fig. 2. While window 1 is centered around amino acid number 2
(a;), window 2 slides along the rest of the chain. When the amino acids centered in
each of the two windows sit opposite each other in a S-sheet the target output is 1,
and otherwise (. After the whole protein has been traversed by window 2, window 1
is moved to the next position (:+1) and the procedure is repeated. If the protein is
L amino acids long this procedure yields an output value for each of the L(L —1)/2
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Figure 2: Neural network for pre-
dicting (-sheets. The network
employs weight sharing to im-
prove the encoding of the amino
acids and to reduce the number
of adjustable parameters.
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pairs of amino acids. We display the output in a L x L gray-scale image as shown in
fig. 3. We assume symmetry of sheets, z.e., if the two windows are interchanged, the
output does not change. This symmetry is ensured (approximately) during training
by presenting all inputs in both directions.

Each window of the network sees K amino acids. An amino acid is represented by a
vector of 20 binary numbers all being zero, except one, which is 1. That is, the amino
acid A is represented by the vector 1,0,0,...,0 and so on. This coding ensures that
the input representations are uncorrelated, but it is a very inefficient coding, since
20 amino acids could in principle be represented by only 5 bit. Therefore, we use
weight sharing [8] to learn a better encoding [4]. The 20 input units corresponding
to one window position are fully connected to three hidden units. The 3 x (20 + 1)
weights to these units are shared by all window positions, i.e., the activation of the
3 hidden units is a new learned encoding of the amino acids, so instead of being
represented by 20 binary values they are represented by 3 real values. Of course the
number of units for this encoding can be varied, but initial experiments showed that
3 was optimal [4]. The two windows of the network are made the same way with
the same number of inputs etc.. The first layer of hidden units in the two windows
are fully connected to a hidden layer which is fully connected to the output unit, see
fig. 2. Furthermore, two structurally identical networks are used: one for parallel
and one for anti-parallel S-sheets.

The basis for the training set in this study is the set of 126 non-homologous protein
chains used in [9], but chains forming 3-sheets with other chains are excluded. This
leaves us with 85 proteins in our data set. For a protein of length L only a very small
fraction of the L(L — 1)/2 pairs are positive examples of 3-sheet pairs. Therefore
it is very important to balance the positive and negative examples to avoid the
situation where the network always predicts no [-sheet. Furthermore, there are
several types of negative examples with quite different occurrences: 1) two amino
acids of which none belong to a [3-sheet; 2) one in a -sheet and one which is not in
a (-sheet; 3) two sitting in [-sheets, but not opposite to each other. The balancing
was done in the following way. For each positive example selected at random a
negative example from each of the three categories were selected at random.

If the network does not have a second layer of hidden units, it turns out that the
result is no better than a network with only one input window, t.e., the network
cannot capture correlations between the two windows. Initial experiments indicated
that about 10 units in the second hidden layer and two identical input windows of
size K = 9 gave the best results. In fig. 3(left) the prediction of anti-parallel sheets
is shown for the protein identified as lacx in the Brookhaven Protein Data Bank
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Figure 3: Left: The prediction of anti-parallel f-sheets in the protein lacx. In the
upper triangle the correct structure is shown by a black square for each (-sheet
pair. The lower triangle shows the prediction by the two-window network. For
any pair of amino acids the network output is a number between zero (white) and
one (black), and it is displayed by a linear gray-scale. The diagonal shows the
prediction of a-helices. Right: The same display for parallel f-sheets in the protein
4fxn. Notice that the correct structure are lines parallel to the diagonal, whereas
they are perpendicular for anti-parallel sheets. For both cases the network was
trained on a training set that did nof contain the protein for which the result is
shown.

[10]. First of all, one notices the checker board structure of the prediction of -
sheets. This is related to the structure of [3-sheets. Many sheets are hydrophobic
on one side and hydrophilic on the other. The side chains of the amino acids in
a strand alternates between the two sides of the sheet, and this gives rise to the
periodicity responsible for the pattern.

Another network was trained on parallel B-sheets. These are rare compared to
the anti-parallel ones, so the amount of training data is limited. In fig. 3(right)
the result is shown for protein 4fxn. This prediction seems better than the one
obtained for anti-parallel sheets, although false positive predictions still occurs at
some positions with strands that do not pair. Strands that bind in parallel 3-sheets
are generally more widely separated in the sequence than strands in anti-parallel
sheets. Therefore, one can imagine that the strands in parallel sheets have to be
more correlated to find each other in the folding process, which would explain the
better prediction accuracy.

The results shown in fig. 3 are fairly representative. The network misses some of the
sheets, but false positives present a more severe problem. By calculating correlation
coefficients we can show that the network does capture some correlations, but they
seem to be weak. Based on these results, we hypothesize that the formation of 3-
sheets is only weakly dependent on correlations between corresponding (-strands.
This is quite surprising. However weak these correlations are, we believe they can
still improve the accuracy of the three state secondary structure prediction. In
order to combine local methods with the non-local 3-sheet prediction, we introduce
a global energy function as described below.












