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Abstract 

Visual cognition depends criticalIy on the ability to make rapid eye movements 
known as saccades that orient the fovea over targets of interest in a visual 
scene. Saccades are known to be ballistic: the pattern of muscle activation 
for foveating a prespecified target location is computed prior to the movement 
and visual feedback is precluded. Despite these distinctive properties, there 
has been no general model of the saccadic targeting strategy employed by 
the human visual system during visual search in natural scenes. This paper 
proposes a model for saccadic targeting that uses iconic scene representations 
derived from oriented spatial filters at multiple scales. Visual search proceeds 
in a coarse-to-fine fashion with the largest scale filter responses being compared 
first. The model was empirically tested by comparing its perfonnance with 
actual eye movement data from human subjects in a natural visual search task; 
preliminary results indicate substantial agreement between eye movements 
predicted by the model and those recorded from human subjects. 

1 INTRODUCTION 

Human vision relies extensively on the ability to make saccadic eye movements. These rapid 
eye movements, which are made at the rate of about three per second, orient the high-acuity 
foveal region of the eye over targets of interest in a visual scene. The high velocity of saccades, 
reaching up to 700° per second for large movements, serves to minimize the time in flight; most 
of the time is spent fixating the chosen targets. 

The objective of saccades is currently best understood for reading text [13] where the eyes fixate 
almost every word, sometimes skipping over smalI function words. In general scenes, however, 
the purpose of saccades is much more difficult to analyze. It was originally suggested that 
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Figure 1: Eye Movements in Visual Search. (a) shows the typical pattern of multiple saccades (shown 
here for two different subjects) elicited during the course of searching for the object composed of the fork 
and knife. The initial fixation point is denoted by • +'. (b) depicts a summary of such movements over many 
experiments as a function of the six possible locations of a target object on the table. 

the movements and their resultant fixations formed a visual-motor memory (or "scan-paths") of 
objects [11] but subsequent work has suggested that the role of saccades is more tightly coupled 
to the momentary problem solving strategy being employed by the subject. In chess, it has 
been shown that saccades are used to assess the current situation on the board in the course of 
making a decision to move, but the exact information that is being represented is not yet known 
[5]. In a task involving the copying of a model block pattern located on a board, fixations have 
been shown to be used in accessing crucial information for different stages of the copying task 
[2]. In natural language processing, there has been recent evidence that fixations reflect the 
instantaneous parsing of a spoken sentence [18]. However, none of the above work addresses the 
important question of what possible computational mechanisms underlie saccadic targeting. 

The complexity of the targeting problem can be illustrated by the saccades employed by subjects 
to solve a natural visual search task. In this task, subjects are given a 1 second preview of a 
single object on a table and then instructed to determine, in the shortest possible amount of time, 
whether the previewed object is among a group of one to five objects on the same table in a 
subsequent view. The typical eye movements elicited are shown in Figure 1 (a). Rather than a 
single movement to the remembered target, several saccades are typical, with each successive 
saccade moving closer to the goal object (Figure 1 (b» . 

The purpose of this paper is to describe a mechanism for programming saccades that can appro x -
imately model the saccadic targeting method used by human SUbjects. Previous models of human 
visual search have focused on simple search tasks involving elementary features such as hori
zontaVvertical bars of possibly different color [1,4,8] or have relied exclusively on bottom-up 
input-driven saliency criteria for generating scan-paths [10, 19]. The proposed model achieves 
targeting in arbitrary visual scenes by using bottom-up scene representations in conjunction with 
previously memorized top-down object representations; both of these representations are iconic, 
based on oriented spatial filters at multiple scales. 

One of the difficult aspects of modeling saccadic targeting is that saccades are ballistic, i.e., 
their final location is computed prior to making the movement and the movement trajectory is 
uninterrupted by incoming visual signals. Furthermore, owing to the structure of the retina, the 
central 1.50 of the visual field is represented with a resolution that is almost 100 times greater 
than that of the periphery. We resolve these issues by positing that the targeting computation 
proceeds sequentially with coarse resolution information being used in the computation of target 
coordinates prior to fine resolution information. The method is compared to actual eye movements 
made by human subjects in the visual search task described above; the eye movements predicted 
by the model are shown to be in close agreement with observed human eye movements. 
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Figure 2: Multiscale Natural Basis Functions. The 10 oriented spatial filters used in our model to 
generate iconic scene representations, shown here at three octave-separated scales. These filters resemble 
the receptive field profiles of cells in the primate visual cortex [20] and have been shown to approximate 
the dominant eigenvectors of natural image distributions as obtained from principal component analysis 
[7,17]. 

2 ICONIC REPRESENTATIONS 
The current implementation of our model uses a set of non-orthogonal basis functions as given 
by a zeroth order Gaussian Go and nine of its oriented derivatives as follows [6]: 

G~n,n = 1,2,3,8n = 0, ... ,m7r/(n + l),m = 1, ... ,n (1) 

where n denotes the order of the filter and 8n refers to the preferred orientation of the filter 

(Figure 2). The response of an image patch I centered at (xo, Yo) to a particular basis filter G~; 
can be obtained by convolving the image patch with the filter: 

Ti,i(xO,YO) = II G~;(xo-x,yo-y)I(x,y)dxdy (2) 

The iconic representation for the local image patch centered at (xo, Yo) is formed by combining 
into a high-dimensional vector the responses from the ten basis filters at different scales: 

rs(xo,Yo) = h,i,s(XO, YO)] (3) 

where i = 0, 1, 2, 3 denotes the order of the filter, j = 1, ... , i + 1 denotes the different filters per 
order, and S = Smin, ... ,Sma., denotes the different scales as given by the levels of a Gaussian 
image pyramid. 

The use of multiple scales is crucial to the visual search model (see Section 3). In particular, the 
larger the number of scales, the greater the perspicuity of the representation as depicted in Figure 3. 
A multiscale representation also alJows interpolation strategies for scale invariance. The bigh
dimensionality of the vectors makes them remarkably robust to noise due to the orthogonality 
inherent in high-dimensional spaces: given any vector, most of the other vectors in the space 
tend to be relatively uncorrelated with the given vector. The iconic representations can also be 
made invariant to rotations in the image plane (for a fixed scale) without additional convolutions 
by exploiting the property of steerability [6]. Rotations about an image plane axis are handled 
by storing feature vectors from different views. We refer the interested reader to [14] for more 
details regarding the above properties. 

3 THE VISUAL SEARCH MODEL 

Our model for visual search is derived from a model for vision that we previously proposed in 
[14]. This model decomposes visual behaviors into sequences of two visual routines, one for 
identifying the visual image near the fovea (the "what" routine), and another for locating a stored 
prototype on the retina (the "where" routine). 
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Figure 3: The Effect of Scale. The distribution of distances (in tenns of correlations) between the response 
vector for a selected model point in the dining table scene and all other points in the scene is shown for 
single scale response vectors (a) and multiple scale vectors (b). Using responses from multiple scales (five 
in this case) results in greater perspicuity and a sharper peak near 0.0; only one point (the model point) 
had a correlation greater than 0.94 in the multiple scale case (b) whereas 936 candidate points fell in this 
category in the single scale case (a). 

The visual search model assumes the existence of three independent processes running concur
rently: (a) a targeting process (similar to the "where" routine of [14]) that computes the next 
location to be fixated; (b) an oculomotor process that accepts target locations and executes a 
saccade to foveate that location (see [16] for more details); and (c) a decision process that models 
the cortico-cortical dynamics of the VI f+ V2 f+ V 4 f+ IT pathway related to the identification 
of objects in the fovea (see [15] for more details). 

Here, we focus on the saccadic targeting process. Objects of interest to the current search task are 
assumed to be represented by a set of previously memorized iconic feature vectors r-:p where s 
denotes the scale of the filters. The targeting algorithm computes the next location to be foveated 
as follows: 

1. Initialize the routine by setting the current scale of analysis k to the largest scale i.e. 
k = max; set Sm(x, y) = 0 for all (x, y). 

2. Compute the current saliency image Sm as 
max 

Sm(x, y) = L Ilr~(x, y) - r-:Pll2 (4) 
s=k 

3. Find the location to be foveated by using the following weighted population averaging 
(or soft max) scheme: 

(x, '0) = L F(S7n(x, y))(x, y) 
(x,y) 

where F is an interpolation function. For the experiments, we chose: 
e-S",(x,y)/)'(k) 

F(S7n(x, y)) = E e-S",(x,y)/)'(k) 
(x,y) 

(5) 

(6) 

This choice is attractive since it allows an interpretation of our algorithm as computing 
maximum likelihood estimates (cf. [12]) of target locations. In the above, >'(k) is 
decreased with k. 

4. Iterate step (2) and (3) above with k = max-I, max-2, . . . until either the target object 
has been foveated or the number of scales has been exhausted. 

Figure 4 illustrates the above targeting procedure. The case where multiple model vectors are 
used per object proceeds in an analogous manner with the target location being averaged over all 
the model vectors. 
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Figure 4: mustration of Saccadic Targeting. The saliency image after the inclusion of the largest (a), 
intermediate (b), and smallest scale (c) as given by image distances to the prototype (the fork and knife); 
the lightest points are the closest matches. (d) shows the predicted eye movements as determined by the 
weighted population averaging scheme (for comparison, saccades from a human subject are given by the 
dotted arrows). 

4 EXPERIMENTAL RESULTS AND DISCUSSION 

Eye movements from four human subjects were recorded for the search task described in Section 1 
for three different scenes (dining table, work bench, and a crib) using an SRI Dual Purkinje 
Eyetracker. The model was implemented on a pipeline image processor, the Datacube MV200, 
which can compute convolutions at frame rate (30/ sec). Figure 5 compares the model's perfor
mance to the human data. As the results show, there is remarkably good correspondence between 
the eye movements observed in human subjects and those generated by the model on the same 
data sets. The model has only one important parameter: the scaling function used to rate the 
peaks in the saliency map. In the development of the algorithm, this was adjusted to achieve an 
approximate fit to the human data. 

Our model relies crucially on the existence of a coarse-to-fine matching mechanism. The 
main benefit of a coarse-to-fine strategy is that it allows continuous execution of the deci
sion/oculomotor processes, thereby increasing the probability of an early match. Coarse-to-fine 
strategies have enjoyed recent popularity in computer vision with the advent of image pyramids 
in tasks such as motion detection [3]. Although these methods show that considerable speedup 
can be achieved by decreasing the size of window of analysis as resolution increases, our prelim
inary experiments suggest that this might be an inappropriate strategy for visual search: limiting 
search to a small window centered on the coarse location estimate obtained from a larger scale 
often resulted in significant errors since the targets frequently lay outside the search window. A 
possible solution is to adaptively select the size of the search window based on the current scene 
but this would require additional computational machinery. 

A key question that remains is the source of sequential application of the filters in the human 
visual system. A possible source is the variation in resolution of the retina. Since only very high 
resolution information is at the fovea, and since this resolution falls off with distance. fine spatial 
scales may be ineffective purely because the fixation point is distant from the target. However. 
our preliminary experiments with modeling the variation in retinal resolution suggest that this is 
probably not the sole cause. The variations at middle distances from the fovea are too small to 
explain the dramatic improvement in target location experienced with the second saccade. Thus, 
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Figure 5: Experimental Results. The graphs compare the distribution of endpoint errors (in terms of 
frequency histograms) for three consecutive saccades as predicted by the model for 180 trials (on the right) 
and as observed with four human subjects for 676 trials (left). Each of the trials contained search scenes 
with one to five objects, one of the objects being the previeWed model. 

there are two remaining possibilities: (a) the resolution fall-off in the cortex is different from the 
retinal variation in a way that supports the data, or (b) the cortical machinery is set up to match 
the larger scales first. In the latter case, the observed data would result from the fact that the 
oculomotor system is ready to move before all the scales can be matched, and thus the eyes move 
to the current best target position. This interpretation of the data is appealing in two aspects. 
First, it reflects a long history of observations on the priority of large scale channels [9], and 
second, it reflects current thinking about eye movement programming suggesting that fixation 
times are approximately constant and that the eyes are moved as soon as they can be during the 
course of visual problem solving. The above questions can however be definitively answered 
only through additional testing of human subjects followed by subsequent modeling. We expect 
our saccadic targeting model to playa crucial role in this process. 
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