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ABSTRACT 

An essential feature of intelligent sensory processing is the ability to 
focus on the part of the signal of interest against a background of 
distracting signals, and to be able to direct this focus at will. In this 
paper the problem of auditory scene segmentation is considered and a 
model of the early stages of the process is proposed. The behaviour of 
the model is shown to be in agreement with a number of well known 
psychophysical results. The principal contribution of this model lies in 
demonstrating how streaming might result from interactions between 
the tonotopic patterns of activity of input signals and traces of previous 
activity which feedback and influence the way in which subsequent 
signals are processed. 

1 INTRODUCTION 

The appropriate segmentation and grouping of incoming sensory signals is important in 
enabling an organism to interact effectively with its environment (Llinas, 1991). The 
formation of associations between signals, which are considered to arise from the same 
external source, allows the organism to recognise significant patterns and relationships 
within the signals from each source without being confused by accidental coincidences 
between unrelated signals (Bregman, 1990). The intrinsically temporal nature of sound 
means that in addition to being able to focus on the signal of interest, perhaps of equal 
significance, is the ability to predict how that signal is expected to progress; such 
expectations can then be used to facilitate further processing of the signal. It is important 
to remember that perception is a creative act (Luria, 1980). The organism creates its 
interpretation of the world in response to the current stimuli, within the context of its 
current state of alertness, attention, and previous experience. The creative aspects of 
perception are exemplified in the auditory system where peripheral processing 
decomposes acoustic stimuli. Since the frequency spectra of complex sounds generally 
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overlap, this poses a complicated problem for the auditory system : which parts of the 
signal belong together, and which of the subgroups should be associated with each other 
from one moment to the next, given the extra complication of possible discontinuities 
and occlusion of sound signals? The process of streaming effectively acts to to associate 
those sounds emitted from the same source and may be seen as an accomplishment, 
rather than the breakdown of some integration mechanism (Bregman, 1990). 

The cognitive model of streaming, proposed by (Bregman, 1990), is based primarily on 
Gestalt principles such as common fate, proximity, similarity and good continuation. 
Streaming is seen as a mUltistage process, in which an initial, preattentive process 
partitions the sensory input, causing successive sounds to be associated depending on the 
relationship between pitch proximity and presentation rate. Further refinement of these 
sound streams is thought to involve the use of attention and memory in the processing of 
single streams over longer time spans. 

Recently a number of computational models which implement these concepts of 
streaming have been developed. A model of streaming in which pitch trajectories are 
used as the basis of sequential grouping is proposed by (Cooke, 1992). In related work, 
(Brown, 1992) uses data-driven grouping schema to form complex sound groups from 
frequency components with common periodicity and simultaneous onset. Sequential 
associations are then developed on the basis of pitch trajectory. An alternative approach 
suggests that the coherence of activity within networks of coupled oscillators, may be 
interpreted to indicate both simultaneous and sequential groupings (Wang, 1995), 
(Brown, 1995), and can, therefore, also model the streaming of complex stimuli. Sounds 
belonging to the same stream, are distinguished by synchronous activity and the 
relationship between frequency proximity and stream formation is modelled by the 
degree of coupling between oscillators. 

A model, which adheres closely to auditory physiology, has been proposed by (Beauvois, 
1991). Processing is restricted to two frequency channels and the streaming of pure 
tones. The model uses competitive interactions between frequency channels and leaky 
integrator model neurons in order to replicate a number of aspects of human 
psychophysical behaviour. The model, described here, used Beauvois' work as a starting 
point, but has been extended to include multichannel processing of complex signals. It 
can account for the relationship streaming and frequency difference and time interval 
(Beauvois, 1991), the temporal development and variability of streaming perceptions 
(Anstis, 1985), the influence of background organisation on foreground perceptions 
(Bregman, 1975), as well as a number of other behavioural results which have been 
omitted due to space limitations. 

2 THEMODEL 

We assume the existence of tonotopic maps, in which frequency is represented as a 
distributed pattern of activity across the map. Interactions between the excitatory 
tonotopic patterns of activity reflecting stimulus input, and the inhibitory tonotopic 
masking patterns, resulting from previous activity, form the basis of the model. In order 
to simulate behavioural experiments, the relationship between characteristic frequency 
and position across the arrays is determined by equal spacing within the ERB scale 
(Glasberg, 1990). The pattern of activation across the tonotopic axis is represented in 
terms of a Gaussian function with a time course which reflects the onset-type activity 
found frequently within the auditory system. 
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Input signals therefore take the form : 

i(x,t) = CI (t - t Onset)e-c2(t-tOrtut )e 2~2lfc(x}-r.)2 [1] 
where i(x.t) is the probability of input activity at position x, time t. C} and C; are 
constants, tan.m is the starting time of the signal, fc (x) is the characteristic frequency at 
position x,/. is the stimulus frequency, and a determines the spread of the activation. 

In models where competitive interactions within a single network are used to model the 
streaming process, such as (Beauvois, 1991), it is difficult to see how the organisation of 
background sounds can be used to improve foreground perceptions (Bregman, 1975) 
since the strengthening of one stream generally serves to weaken others. To overcome 
this problem, the model of preattentive streaming proposed here, consists of two 
interacting networks, the foreground and background networks, F and B; illustrated in 
figure 1. The output from F indicates the activity, if any, in the foreground, or attended 
stream, and the output from B reflects any other activity. The interaction between the 
two eventually ensures that those signals appearing in the output from F, i.e. in the 
foreground stream, do not appear in the output from B, the background; and vice versa. 
In the model, strengthening of the organisation of the background sounds, results in the 
'sharpening' of the foreground stream due to the enhanced inhibition produced by a more 
coherent background. 

rre rnR 

Figure 1 : Connectivity of the Streaming Networks. 

Neurons within each array do not interact with each other but simply perform a 
summation of their input activity. A simplified neuron model with low-pass filtering of 
the inputs, and output representing the probability offiring, is used: 

p(x, t) = cr[~ Vj(x, t)], where cr(y) = I+~_Y [2] 
J 

The inputs to the foreground net are : 
VI (x,t) = (1- ::)VI (x,t-dt) + VI . ~(i(x,t».dt [3] 

V2(X,t) = (1- ::)V2(X, t- dt) + V2¥mFi(x,t- dt» .dt [4] 

V3(X, t) = (1- ~)v3(x,t-dt) + V3 .~(mB(x,t- dt».dt [5] 
where x is the position across the array, time t, sampling rate dt. "tj are time constants 
which determine the rate of decay of activity, V; are weights on each of the inputs, and 
t/J(y) is a function used to simulate the stochastic properties of nerve firing which returns 
a value of J or 0 with probability y. 
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The output activity pattern in the foreground net and its 'inverse', mF(x,f) and mFi(x,t), 
are found by : 

mF(x, t) = cr[v\ (x, t) -l'\(V2(X, t), n) -l'\(V3(X, t), n)] [6] 

N 
mFi(x, t) = max { [~ ~ mF(xi' t - dt)] - mF(x, t- dt), O} [7] 

i=\ 

where 17(v(x,f),n) is the mean of the activity within neighbourhood n of position x at time 
t and N is the number of frequency channels. Background inputs are similarly calculated. 

To summarise, the current activity in response to the acoustic stimulus forms an 
excitatory input to both the foreground and background streaming arrays, F and B. In 
addition, F receives inhibitory inputs reflecting the current background activity, and the 
inverse of the current foreground activity. The interplay between the excitatory and 
inhibitory activities causes the model to gradually focus the foreground stream and 
exclude extraneous stimuli. Since the patterns of inhibitory input reflect the distributed 
patterns of activity in the input, the relationship between frequency difference and 
streaming, results simply from the graded inhibition produced by these patterns. The 
relationship between tone presentation rate and streaming is determined by the time 
constants in the model which can be tuned to alter the rate of decay of activity. 

To enable comparisons with psychophysical results, we view the judgement of coherence 
or streaming made by the model as the difference between the strength of the foreground 
response to one set of tones compared to the other. The strength of the response to a 
given frequency, Resp(f,t), is a weighted sum of the activity within a window centred on 
the frequency : 

W _k... 
Respif, t) = ~ mF(x(j) + i, t) * e 2(12 [8] 

i=-W 

where W determines the size of the window centred on position, x(/), the position in the 
map corresponding to frequency f, and a determines the spread of the weighting 
function about position x(/). 

The degree of coherence between two tones, say hand h' is assumed to depend on the 
difference in strength of foreground response to the two : 

C hif I: t) = 1 _/ Resp(fj .t)--Resp{j2,t) / [9] o \,j 2, Resp(fj . t}+Resp(/2,t) 

where Coh(f;,h,t) ranges between 0, when Resp(f;,t) or Resp(h,t) vanishes and the 
difference between the responses is a maximum, indicating maximum streaming, and 1, 
when the responses are equal and maximally coherent. Values between these limits are 
interpreted as the degree of coherence, analogous to the probability of human subjects 
making ajudgement of coherence (Anstis, 1985), (Beauvois, 1991). 

3 RESULTS 

Experiments exploring the effect of frequency interval and tone presentation rate and 
streaming are described in (Beauvois, 1991). Subjects were required to listen to an 
alternating sequence of tones, ABABAB ... for 15 seconds, and then to judge whether at 
the end of the sequence they perceived an oscillating, trill-like, temporally coherent 
sequence, or two separate streams, one of interrupted high tones, the other of interrupted 
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low tones. Their results showed clearly an increasing tendency towards stream 
segmentation both with increasing frequency difference between A and B, and 
increasing tone presentation rate, results the model manages substantially to reproduce; 
as may be seen in figure 2. 
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Figure 2 : Mean Psychophysical '0' and Model ,*, Responses to the Stimulus ABAB ... 
(A=lOOO Hz, B as indicated along X axis (Hz), tone presentation rates, as shown.) 

In investigating the temporal development of stream segmentation, (Anstis, 1985) used a 
similar stimulus to the experiment described above, but in this case subjects were 
required to indicate continuously whether they were perceiving a coherent or streaming 
signal. As can be seen in figure 3, the model clearly reproduces the principal features 
found in their experiments, i.e. the probability of hearing a single, fused, stream declines 
during each run, the more rapid the tone presentation rate, the quicker stream 
segmentation occurs, and the judgements made were quite variable during each run. 

In an experiment to investigate whether the organisation of the background sounds 
affects the foreground, subjects were required to judge whether tone A was higher or 
lower than B (Bregman, 1975). This judgement was easy when the two tones were 
presented in isolation, but performance degraded significantly when the distractor tones, 
X, were included. However, when a series of 'captor' tones, C, with frequency close to X 
were added, the judgement became easier, and the degree of improvement was inversely 
related to the difference in frequency between X and C. In the experiment, subjects 
received an initial priming AB stimulus, followed by a set of 9 tones : CCCXABXCC. 
The frequency of the captor tones, was manipulated to investigate how the proximity of 
'captor' to 'distractor' tones affected the required AB order judgement. 
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Figure 3 : The Probability of Perceptual Coherence as a Function of Time in Response 
to Two Alternating Tones. Symbols: '.' 2 tones/s, '0' 4 tones/s, '+' 8 tones/so 

In order to model this experiment and the effect of priming, an 'attentive' input, focussed 
on the region of the map corresponding to the A and B tones, was included. We assume, 
as argued by Bregman, that subjects' performance in this task is related to the degree to 
which they are able to stream the AB pair separately. His D parameter is a measure of 
the degree to which ABIBA can be discriminated. The model's performance is then 
given by the strength of the foreground response to the AB pair as compared to the 
distractor tones, and Coh([A B],X) is used to measure this difference. The model exhibits 
a similar sensitivity to the distractor/captor frequency difference to that of human 
subjects, and it appears that the formation of a coherent background stream allows the 
model to distinguish the foreground group more clearly. 
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Figure 4 : A) Experiment to Demonstrate the Formation ofMuItiple Streams, 
(Bregman, 1975). B) Model Response; '·'Mean Degree of Doherence to XABX, '0', 

Bregman's D Parameter, '+' Model's Judgement of Coherence. 

4 DISCUSSION 

The model of streaming which we have presented here is essentially a very simple one, 
which can, nevertheless, successfully replicate a wide range of psychophysical 
experiments. Embodied in the model is the idea that the characteristics of the incoming 
sensory signals result in activity which modifies the way in which subsequent incoming 
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signals are processed. The inhibitory feedback signals effectively comprise expectations 
against which later signals are processed. Processing in much of the auditory system 
seems to be restricted to processing within frequency 'channels'. In this model, it is 
shown how local interactions, restricted almost entirely to within-channel activity, can 
form a global computation of stream formation. It is not known where streaming occurs 
in the auditory system, but feedback projections both within and between nuclei are 
extensive, perhaps allowing an iterative refinement of streams. Longer range projections, 
originating from attentive processes or memory, may modify local interactions to 
facilitate the extraction of recognised or interesting sounds. 

The relationship between streaming and frequency interval, could be modelled by 
systematically graded inhibitory weights between frequency channels. However, in the 
model this relationship arises directly from the distributed incoming activity patterns, 
which seems a more robust and plausible solution, particularly if one takes the need to 
cope with developmental changes into account. Although to simplify the simulations 
peripheral auditory processing was not included in the model, the activity patterns 
assumed as input can be produced by the competitive processing of the output from a 
cochlear model. 

An important aspect of intelligent sensory processing is the ability to focus on signals of 
interest against a background of distracting signals, thereby enabling the perception of 
significant temporal patterns. Artificial sensory systems, with similar capabilities, could 
act as robust pre-processors for other systems, such as speech recognisers, fault detection 
systems, or any other application which required the dynamic extraction and temporal 
linking of subsets of the overall signal. 

Values Used For Model Parameters 

a=.005, c)=75, c2=100, V=[lOO 5 5 5 5], T=[.05 .6 .6 .6 .6], n=2, N=lOO 
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