An Integrated Architecture of Adaptive Neural Network Control for Dynamic Systems

Part of Advances in Neural Information Processing Systems 7 (NIPS 1994)

Bibtex Metadata Paper

Authors

Ke Liu, Robert Tokar, Brain McVey

Abstract

In this study, an integrated neural network control architecture for nonlinear dynamic systems is presented. Most of the recent emphasis in the neural network control field has no error feedback as the control input, which rises the lack of adaptation problem. The integrated architecture in this paper combines feed forward control and error feedback adaptive control using neural networks. The paper reveals the different internal functionality of these two kinds of neural network controllers for certain input styles, e.g., state feedback and error feedback. With error feedback, neural network controllers learn the slopes or the gains with respect to the error feedback, producing an error driven adaptive control systems. The results demonstrate that the two kinds of control scheme can be combined to realize their individual advantages. Testing with disturbances added to the plant shows good tracking and adaptation with the integrated neural control architecture.