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Abstract 

This paper presents the design and simulation results of a self­
organizing neural network which induces a grammar from exam­
ple sentences. Input sentences are generated from a simple phrase 
structure grammar including number agreement, verb transitiv­
ity, and recursive noun phrase construction rules. The network 
induces a grammar explicitly in the form of symbol categorization 
rules and phrase structure rules. 

1 Purpose and related works 

The purpose of this research is to show that a self-organizing network with a certain 
structure can acquire syntactic knowledge from only positive (i.e. grammatical) 
data, without requiring any initial knowledge or external teachers that correct 
errors. 

There has been research on supervised neural network models of language acquisi­
tion tasks [Elman, 1991, Miikkulainen and Dyer, 1988, John and McClelland, 1988]. 
Unlike these supervised models, the current model self-organizes word and phrasal 
categories and phrase construction rules through mere exposure to input sentences, 
without any artificially defined task goals. There also have been self-organizing 
models of language acquisition tasks [Ritter and Kohonen, 1990, Scholtes, 1991]. 
Compared to these models, the current model acquires phrase structure rules in 
more explicit forms, and it learns wider and more structured contexts, as will be 
explained below. 

2 Network Structure and Algorithm 

The design of the current network is motivated by the observation that humans 
have the ability to handle a frequently occurring sequence of symbols (chunk) 
as an unit of information [Grossberg, 1978, Mannes, 1993]. The network consists 
of two parts: classification networks and production networks (Figure 1). The 
classification networks categorize words and phrases, and the production networks 
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evaluate how it is likely for a pair of categories to form a phrase. A pair of combined 
categories is given its own symbol, and fed back to the classifiers. 

After weights are formed, the network parses a sentence as follows. Input words 
are incrementally added to the neural sequence memory called the Gradient Field 
[Grossberg, 1978] (GF hereafter). The top (i.e. most recent) two symbols and the 
lookahead token are classified by three classification networks. Here a symbol 
is either a word or a phrase, and the lookahead token is the word which will be 
read in next. Then the lookahead token and the top symbol in the GF are sent to 
the right production network, and the top and the second ones are sent to the left 
production network. If the latter pair is judged to be more likely to form a phrase, 
the symbol pair reduces to a phrase, and the phrase is fed back to the GF after 
removing the top two symbols. Otherwise, the lookahead token is added to the 
sequence memory, causing a shift in the sequence memory. If the input sentence is 
grammatical, the repetition of this process reduces the whole sentence to a single 
"5" (sentence) symbol. The sequence of shifts and reductions (annoted with the 
resultant symbols) amounts to a parse of the sentence. 

During learning, the operations stated above are carried out as weights are grad­
ually formed. In classification networks, the weights record a distribution pattern 
with respect to each symbol. That is, the weights record the co-occurrence of 
up to three adjacent symbols in the corpus. An symbol is classified in terms of 
this distribution in the classification networks. The production networks keep 
track of the categories of adjacent symbols. If the occurrence of one category reli­
ably predicts the next or the previous one, the pair of categories forms a phrase, 
and is given the status of an symbol which is treated just like a word in the 
sentence. Because the symbols include phrases, the learned context is wider 
and more structured than the mere bigram, as well as the contexts utilized in 
[Ritter and Kohonen, 1990, Scholtes, 1991]. 

3 Simulation 

3.1 The Simulation Task 

The grammar used to generate input sentences (Table 3) is identical to that used 
in [Elman,1991], except that it does not include optionally transitive verbs and 
proper nouns. Lengths of the input sentences are limited to 16 words. To deter­
mine the completion of learning, after accepting 200 consecutive sentences with 
learning, learning is suppressed and other 200 sentences are processed to see if all 
are accepted. In addition, the network was tested for 44 ungrammatical sentences 
to see that they are correctly rejected. Ungrammatical sentences are derived by 
hand from randomly generated grammatical sentences. Parameters used in the 
simulation are : number of symbol nodes = 30 (words) + 250 (phrases), number 
of category nodes = ISO, f. = 10-9, 'Y = 0.25, p = 0.65, 0'1 = 0.00005, /31 = 0.005, 
f32 = 0.2, 0'3 = 0.0001, /33 = 0.001, and T = 4.0. 
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3.2 Acquired Syntax Rules 

Learning was completed after learning 19800 grammatical sentences. Tables 1 and 
2 show the acquired syntax rules extracted from the connection weights. Note that 
category names such as Ns, VPp, are not given a priori, but assigned by the author 
for the exposition. Only rules that eventually may reach the "S"(sentence) node 
are shown. There were a small number of uninterpretable rules, which are marked 
I/?". These rules might disturb normal parsing for some sentences, but they were 
not activated while testing for 200 sentences after learning. 

3.3 Discussion 

Recursive noun phrase structures should be learned by finding equivalences of 
distribution between noun phrases and nouns. However, nouns and noun phrases 
have the same contextual features only when they are in certain contexts. An 
examination of the acquired grammar reveals that the network finds equivalence 
of features not of ''N'' and ''N RC" (where RC is a relative clause) but of "N V" and 
''N RC V" (when ''N RC" is subjective), or "V N" and /IV NRC" (when ''N RC" 
is objective). As an example, let us examine the parsing of the sentence [19912] 
below. The rule used to reduce FEEDS CATS WHO UVE (''V NRC") is PO, which 
is classified as category C4, which includes P121 (''V N") where V are the singular 
forms of transitive verbs, and also includes the ''V'' where V are singular forms of 
intransitive verbs. Thus, GIRL WHO FEEDS CATS WHO UVE is reduced to GIRL 
WHO "VPsingle". 

***[19912}***********··**********··*******··************ •• *******.**** 
+---141---+ 
I +---88------+ 
I I +---206------+ 
I I I +----0----+ 
I I I I +-219-+ 
I I +-41-+ I +-36-+ I 

BOYS CHASE GIRL WHO FEEDS CATS WHO LIVE 

«Accepted» Top symbol was 77 

4 Conclusion and Future Direction 

In this paper, a self-organizing neural network model of grammar learning was 
presented. A basic principle of the network is that all words and phrases are 
categorized by the contexts in which they appear, and that familiar sequence of 
categories are chunked. 

As it stands, the scope of the grammar used in the simulation is extremely limited. 
Also, considering the poverty of the actual learning environment, the learning 
of syntax should also be guided by the cognitive competence to comprehend the 
utterance situations and conversational contexts. However, being a self-organizing 
network, the current model offers a plausible model of natural language acquisition 
through mere exposures to only grammatical sentences, not requiring any external 
teacher or an explicit goal. 
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S := 

C4 :a 

C13 .-
C16 := 
C18 .-
C20 .-
C26 := 

C29 .-
C30 := 

C32 .-
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Table 1. Acquired categorization rules 

C29 r NPs VPs ., I C52 .- P41 rNsR·, 
C30r?·,1 C56 .- P36 rNpR·, 
enr~vpp·, C58 := P28 r Ns vrs ., I 
LIVES I ALKS I P34 r Np vrVi I 
POrvrsNpRC·' I P68 r Ns RC so, I 
P74 rvrsNs RC·, I P147 rNpRCvrp·, = rNvr·, 
P121 rvrsNs·' I C69 .- P206 rNs R VPs·' = rNsRCs·' 
P157 rvrsNpo, .. rVps·' P238 rNsRNvr·, 
GIRL I DOG I C74 .- P219 rNpRVpp 0' I = rNpRCp·' 
CAT I BOY = /"Ns·, P249 rNpRNvr·, 
CHASE I FEED = rvrp·' C77 .- P141 rNpVPp·' I 
WHO =rR·, P217 rNpRCVpp·, = rNPpVPp·, 
CHASES I FEEDS = rvrs·' C1l9 := Pl48 =/"vrsNvr·, 
BOYS I CATS I C122 .- P243 = rNsR vrsNvr·, 
DOGS I GIRLS =rNp·' C139 .- PIO rvrs NPs VPs·' I = /" VPs' VPp's ?, 
P93 r Ns RC VPs·' I P32 r vrs NPp VPp • , 
P138 rNs VPs·' = rNPsvps·, wnere 
P2 r vrp NP\.iPp ., I RCs = RVPs I RNvr 
P94 r vrp N ., I RCp = RVPp I RNvr 
P137 r?·, = r? 0, NPp = Np I NpRCp 
WALK I LIVE I NPs = Ns I NsRCs 
PI r~NpRC·' I 
P61 r pNpo, I 
P88rvrpNs RC·, I 
P122 r vrp Ns·' = rvpp·' 

Table 2. Acquired production rules 

PO 
P1 
P2 
PI0 
P28 
P32 
P34 
P36 
P41 
P61 
P68 
P74 
P88 
P93 
P94 
P121 
P122 
P137 
P138 
P141 
P147 
P148 
P157 
P206 
P217 
P219 
P238 
P243 
P249 

:=C20 rvrs·' 
:=C16 rvrp·' 
:= C16 rvrp·, 
:= C20 rvrs·' 
:=C13 rNs·' 
:=C20 rvrs·' 
:=C26 rNp·' 
:= C26 ,. Np ., 
:=C13 rNs·' 
:= C16 rvrp·' 
:=C69 rNsRCs·, 
:=C20 rvrs·' 
:=C16 rVTp·' 
:= C69 rNsRCs·, 
:= C16 rvrp·' 
:= C20 r vrs • , 
:=C16 rVTp·' 
:= C122 r NsR vrsNVT·, 
:=C13 rNs·' 
:= C26 rNp·' 
:=C74 rNp RCs·, 
:= C20 rvrs 0' 
:=C20 rvrs·' 
:= C52 r Ns R ., 
:= C74 rNp RCs·, 
:= C56 r Np R ., 
:=C52rNsR·, 
:= C52 r Ns R 0' 
:=C56 rNpR·, 

C74 rNpRCp 0' 
C74rNpRCp·' 
en /"NPpVpp·' 
C29 rNPs VPs·' 
C20 rvrso, 
C77/"NPpVPp·' 
C16/"vrp·' 
C18 /"R·I 
C18 /"R·, 
C26 /"Np·1 
C20 /"vrs·' 
C69 rNs RCs·, 
C69 r Ns RCs ., 
C4 r VPs·' 
C58/"Nvr·, 
C13/"Ns·, 
C13 rNs·' 
C32 /"VPp 0' 
C4rVps·' 
C32 /"Vpp·, 
C16 rvrp·' 
C58/"Nvr·1 
C26/"Np·' 
C4 rVPs·1 
C32r Vpp·' 
C32r Vpp·' 
C58 rNvrol 
C119/"vrsNvr·, 
C58/"Nvr·, 

= r vrs Np RCp ., 
= rvrpNpRCp·' 
= rvrpNPp VPp·' 
.. rvrsNPs VPs·' 
= rNsvrs·' 
= /"vrsNPpVPp·' 
= /"Npvrp·' 
=rNpR·, 
=rNsR·, 
=/"vrpNp·' 
= /"NsRCs vrs·' 
= r vrs Ns RCs ., 
= rvrpNsRCs·' 
= r Ns RCs VPs ., 
= rvrpNvr·, 
= /"vrs Ns·1 
= rvrpNs·, 
= /"?·I 
= rNsvps, 
=/"NpVPp·' 
= rNp RCs vrp·' 
= rvrsNvr·, 
= rvrsNp·, 
= /"NsRVPs·' 
= r Np RCs VPp ., 
= /"NpRVPp·' 
=/"NsRNvr·, 
= /" (Ns R vrs N) vr ·1 
= /"Np RNvr·, 
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Appendix A. Activation and learning equations 

A.l Classification Network Activities 

eGradient Field 

where t is a discrete time, i is the symbol id. and Ii(t) is an input symbol. 

eInput Layer 

(1 ) 

X1Ai(t) = O(2(XOi(t)-O(XOi(t)))), X1Bi(t) = O(XOi(t)), X1ci(t) = Ii(t+1) 

Where the suffix A ,B, and C the most recent, the next to most recent, and the 
lookahead symbols, respectively'. Weights in networks A, B, and C are identical. 

O(x) = J 1 if x > 1.-2-M 

1. 0 otherwIse 
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Here M is the maximum number of symbols on the gradient field . 

• Feature Layer 

X2;i = L Xl"j Wl"ji, X2;{1 = I(Xl;d(a+ 2: X2;j)), X2"i = X2;{ /(a+ 2: X2;f) 
j j j 

I(x) = 2/(1 + exp( -Tx)) - 1 

where s is a suffix which is either A, B, or C and T is the steepness of the sigmoid 
function and a is a small positive constant. Table 4 shows the meaning of above 
suffix i . 

• Category Layer 

{
I if i = min{jl2:k8X2"kW2"kj > p}, or 

X3pi = 0 if ¢ = min{jl2:k" X2"k W2"kj > p} & unreli =ja:r: {unrefJ} (2) 
otherwise 

Where p is the least match score required and ure Ii is an unreferenced count. 

A.2 Classification Learning 

.Feature Weights 
LlWl"ij = -alWl"ij +,81Xl i (X2"j - Wl"ij) 

where al is the forgetting rate, and ,81 is the learning rate . 

• Categorization Weights 

{ Ll W2"ij = /32X3"i(X2"i - W2"ij) if the node is selected by the first line of (2) 
W2"ij = X2"i if the node is selected by the second line of (2) 

where /32 is the learning rate. 

A.3 Production Network Activities 

.Mutual predictiveness 

= X3Ai W3ij, 
= X3Bi W3ij, 

= X3B j W4ji , 
= X3cjW4ji , 

= X4ij XSji 
= X7ij X8ji 

The phrase identification number for a category pair (i, j) is given algOrithmically 
in the current version by a cash function cash(i, j). 

(i) Case in which 'Y 2:ij X6ij ~ 2:ij X9ij Reduce 

{ 1 if i = cash(I, J) where X6IJ =i]a:r: (X6ij ) 

X10j = 0 otherwise 

XOi(t + 1) = 0.5 * pop(pOp(XOi(t))) + XlO, pop(x) = 2(x - 8(x)) 

(ii) Case in which 'Y Eij X6ij < 2:ij X9ij Shift 
The next input symbol is added on the gradient field, as was expressed in (1). 
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A.4 Production Learning 

where X3 Ai and X3 Bj are nodes that receive the next to the most recent symbol i 
and the most recent symbol j, respectively. 

Shift I Reduce 
Controller 

Production 
Networks 
(predlctlveness 
evaluators) 

Classification ~ ~ ) eedback 
hrases 

Networks ... ~ 0 
(~ 00 
171 o~_70v'ovO~I--+----.J 

Neural Sequence Me ory 
Lookahead 
Token 

Input words 

Figure 1. Block diagram of the network 

NP N I NRC 
VP V[NP] 
RC whoNPV I whoVP 
N boy I girl I cat I dog I 

boys I girls I cats 1 dogs 
V _ chase I feed I work I live I 

chases I feeds I works I lives 
urn agreement 

- Agreements between N and V within clause 
- Agreements between head Nand 
subordinate V (where a ro riate) 
er arguments 

- chase, feed -> require a direct object 
- walk, live -> preclude a direct object 
(Observed also for head/verb relations 
in relative clauses) 

Table 3. Grammar for generated sentences Table 4. Subfields in a feature layer 
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Category 
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o 

Category 
(Lookahead) 

Nonterm inal s 
(Reduction 
Results) 

prllYious next next to next 

Figure 2. Classification Network 

x '0 

Nonterminal 

The ext to 
Most Recent 
Category 
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Figure 3. Production Network 
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Xg 
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X7 

Lookahead 
Category 


