
Instance-Based State Identification for
Reinforcement Learning

R. Andrew McCallum
Department of Computer Science

University of Rochester
Rochester, NY 14627-0226

mccallumCcs.rochester.edu

Abstract

This paper presents instance-based state identification, an approach
to reinforcement learning and hidden state that builds disambiguat
ing amounts of short-term memory on-line, and also learns with an
order of magnitude fewer training steps than several previous ap
proaches. Inspired by a key similarity between learning with hidden
state and learning in continuous geometrical spaces, this approach
uses instance-based (or "memory-based") learning, a method that
has worked well in continuous spaces.

1 BACKGROUND AND RELATED WORK

When a robot's next course of action depends on information that is hidden from
the sensors because of problems such as occlusion, restricted range, bounded field
of view and limited attention, the robot suffers from hidden state. More formally,
we say a reinforcement learning agent suffers from the hidden state problem if the
agent's state representation is non-Markovian with respect to actions and utility.

The hidden state problem arises as a case of perceptual aliasing: the mapping be
tween states of the world and sensations of the agent is not one-to-one [Whitehead,
1992]. If the agent's perceptual system produces the same outputs for two world
states in which different actions are required, and if the agent's state representation
consists only of its percepts, then the agent will fail to choose correct actions. Note
that even if an agent's state representation includes some internal state beyond its

378 R. Andrew McCallum

immediate percepts, the agent can still suffer from hidden state if it does not keep
enough internal state to uncover the non-Markovian-ness of its environment.

One solution to the hidden state problem is simply to avoid passing through the
aliased states. This is the approach taken in Whitehead's Lion algorithm [White
head, 1992]. Whenever the agent finds a state that delivers inconsistent reward, it
sets that state's utility so low that the policy will never visit it again. The success
of this algorithm depends on a deterministic world and on the existence of a path
to the goal that consists of only unaliased states.

Other solutions do not avoid aliased states, but do as best they can given a non
Markovian state representation [Littman, 1994; Singh et al., 1994; Jaakkola et al.,
1995]. They involve either learning deterministic policies that execute incorrect
actions in some aliased states, or learning stochastic policies with action choice
probabilities matching the proportions of the different underlying aliased world
states. These approaches do not depend on a path of unaliased states, but they
have other limitations: when faced with many aliased states, a stochastic policy
degenerates into random walk; when faced with potentially harmful results from
incorrect actions, deterministically incorrect or probabilistically incorrect action
choice may prove too dangerous; and when faced with performance-critical tasks,
inefficiency that is proportional to the amount of aliasing may be unacceptable.

The most robust solution to the hidden state problem is to augment the agent's
state representation on-line so as to disambiguate the aliased states. State identi
fication techniques uncover the hidden state information-that is, they make the
agent's internal state space Markovian. This transformation from an imperfect state
information model to a perfect state information model has been formalized in the
decision and control literature, and involves adding previous percepts and actions to
the definition of agent internal state [Bertsekas and Shreve, 1978]. By augmenting
the agent's perception with history information-.short-term memory of past per
cepts, actions and rewards-the agent can distinguish perceptually aliased states,
and can then reliably choose correct actions from them.

Predefined, fixed memory representations such as order n Markov models (also
known as constant-sized perception windows, linear traces or tapped-delay lines)
are often undesirable. When the length of the window is more than needed, they
exponentially increase the number of internal states for which a policy must be
stored and learned; when the length of the memory is less than needed, the agent
reverts to the disadvantages of undistinguished hidden state. Even if the agent de
signer understands the task well enough to know its maximal memory requirements,
the agent is at a disadvantage with constant-sized windows because, for most tasks,
different amounts of memory are needed at different steps of the task.

The on-line memory creation approach has been adopted in several reinforcement
learning algorithms. The Perceptual Distinctions Approach [Chrisman, 1992] and
Utile Distinction Memory [McCallum, 1993] are both based on splitting states of a
finite state machine by doing off-line analysis of statistics gathered over many steps.
Recurrent-Q [Lin, 1993] is based on training recurrent neural networks. Indexed
Memory [Teller, 1994] uses genetic programming to evolve agents that use load and
store instructions on a register bank. A chief disadvantage of all these techniques
is that they require a very large number of steps for training.

Instance-Based State Identification for Reinforcement Learning 379

2 INSTANCE-BASED STATE IDENTIFICATION

This paper advocates an alternate solution to the hidden state problem we term
instance-based state identification. The approach was inspired by the successes of
instance-based (also called "memory-based") methods for learning in continuous
perception spaces, (i.e. [Atkeson, 1992; Moore, 1992]).

The application of instance-based learning to short-term memory for hidden state is
driven by the important insight that learning in continuous spaces and learning with
hidden state have a crucial feature in common: they both begin learning without
knowing the final granularity of the agent's state space. The former learns which
regions of continuous input space can be represented uniformly and which areas
must be finely divided among many states. The later learns which percepts can
be represented uniformly because they uniquely identify a course of action with
out the need for memory, and which percepts must be divided among many states
each with their own detailed history to distinguish them from other perceptually
aliased world states. The first approach works with a continuous geometrical input
space, the second works with a percept-act ion-reward "sequence" space, (or "his
tory" space). Large continuous regions correspond to less-specified, small memories;
small continuous regions correspond to more-specified, large memories.

Furthermore, learning in continuous spaces and sequence spaces both have a lot to
gain from instance-based methods. In situations where the state space granularity
is unknown, it is especially useful to memorize the raw previous experiences. If
the agent tries to fit experience to its current, flawed state space granularity, it is
bound to lose information by attributing experience to the wrong states. Experi
ence attributed to the wrong state turns to garbage and is wasted. When faced
with an evolving state space, keeping raw previous experience is the path of least
commitment, and thus the most cautious about losing information.

3 NEAREST SEQUENCE MEMORY

There are many possible instance-based techniques to choose from, but we wanted
to keep the first application simple. With that in mind, this initial algorithm is
based on k-nearest neighbor. We call it Nearest Sequence Memory, (NSM). It bears
emphasizing that this algorithm is the most straightforward, simple, almost naive
combination of instance-based methods and history sequences that one could think
of; there are still more sophisticated instance-based methods to try. The surprising
result is that such a simple technique works as well as it does.

Any application of k-nearest neighbor consists of three parts: 1) recording each
experience, 2) using some distance metric to find neighbors of the current query
point, and 3) extracting output values from those neighbors. We apply these three
parts to action-percept-reward sequences and reinforcement learning by Q-Iearning
lWatkins, 1989] as follows:

1. For each step the agent makes in the world, it records the action, percept
and reward by adding a new state to a single, long chain of states. Thus,
each state in the chain contains a snapshot of immediate experience; and
all the experiences are laid out in a time-connected history chain.

380

Learning in a Geometric Space
k-nearest neighbor, k = 3

•

•
•

Learning in a Sequence Space
k-nearest neighbor, k = 3

•
•

00014001301201

R. Andrew McCallum

•
•

match length

3~ 0 1 "

action. percept. rewanl

Figure 1: A continuous space compared with a sequence space. In each case, the
"query point" is indicated with a gray cross, and the three nearest neighbors are
indicated with gray shadows. In a geometric space, the neighborhood metric is
defined by Euclidean distance. In a sequence space, the neighborhood metric is
determined by sequence match length-the number of preceding states that match
the states preceding the query point.

2. When the agent is about to choose an action, it finds states considered to
be similar by looking in its state chain for states with histories similar to
the current situation. The longer a state's string of previous experiences
matches the agent's most recent experiences, the more likely the state rep
resents where the agent is now.

3. Using the states, the agent obtains Q-values by averaging together the
expected future reward values associated with the k nearest states for each
action. The agent then chooses the action with the highest Q-value. The
regular Q-Iearning update rule is used to update the k states that voted for
the chosen action.

Choosing to represent short-term memory as a linear trace is a simple, well
established technique. Nearest Sequence Memory uses a linear trace to represent
memory, but it differs from the fixed-sized window approaches because it provides
a variable memory-length-like k-nearest neighbor, NSM can represent varying res
olution in different regions of state space.

4 DETAILS OF THE ALGORITHM

A more complete description of Nearest Sequence Memory, its performance and its
possible improvements can be found in [McCallum, 1995].

The interaction between the agent and its environment is described by actions,
percepts and rewards. There is a finite set of possible actions, A = {al,a2, ... ,am },

Instance-Based State Identification for Reinforcement Learning 381

a finite set of possible percepts, () = {Ol, 02, ... , On}, and scalar range of possible
rewards, n = [x, y], x, Y E~. At each time step, t, the agent executes an action,
at E A, then as a result receives a new percept, Ot E (), and a reward, rt E n. The
agent records its raw experience at time t in a "state" data point, St. Also associated
with St is a slot to hold a single expected future discounted reward value, denoted
q(st). This value is associated with at and no other action.

1. Find the k nearest neighbor (most similar) states for each possible future action.
The state currently at the end of the chain is the "query point" from which we
measure all the distances. The neighborhood metric is defined by the number
of preceding experience records that match the experience records preceding the
"query point" state. (Here higher values of n(s;, sJ) indicate that S; and Sj are
closer neighbors.)

(_ _)_ { 1+n(s;_1,Sj-I),
n S" SJ - 0 ,

if (a;-1 = aj-I) A (0;-1 = OJ-I) A (r;-1 = rj_I)
otherwise

(1)
Considering each of the possible future actions ill turn, we find the k nearest
neighbors and give them a vote, v(s;).

v(S;) = { ~: if n(st, s;) is among the k maxv$jlaj=a; n(st, Sj)'s
otherwise (2)

2. Determine the Q-value for each action by averaging individual the q-values from
the k voting states for that action.

Qt(a;) = L (v(s;)/k)q(sj) (3)
V$jlaj=a;

3. Select an action by maximum Q-value, or by random exploration. According to
an exploration probability, e, either let at+1 be randomly chosen from A, or

(4)

4. Execute the action chosen in step 3, and record the resulting experience. Do this
by creating a new "state" representing the current state of the environment, and
storing the action-percept-reward triple associated with it:
Increment the time counter: t ~ t + 1. Create St; record in it at, Ot, rt.
The agent can limit its storage and computational load by limiting the number
of instances it maintains to N (where N is some reasonably large number) . Once
the agent accumulates N instances, it can discard the oldest instance each time
it adds a new one. This also provides a way to handle a changing environment.

5. Update the q-values by vote. Perform the dynamic programming step using the
standard Q-Iearning rule to update those states that voted for the chosen action.
Note that this actually involves performing steps 1 and 2 to get the next Q-values
needed for calculating the utility of the agent's current state, Ut . (Here (3 is the
learning rate.)

Ut = max Qt(a) (5)
a

(Vsda; = at-I) q(s;) ~ (1- (3v(s;))q(s;) + (3v(s;)(r; + "YUt) (6)

382

20

15

~
5 10

5

Performance during learning

Nearest Sequence Memory -
Perceptual Distinctions Approach - .

1000 2000 3000 4000 5000 6000 7000 8000
Steps

lD ~: t
StejM 10 LMm

74 1500
_of

fBI
StepslOLMm

~:;
153 2500

.... borof

70

60

50

.,
c. 40 li

30

20

10
0

R. Andrew McCallum

Steps per Trial during learning

Nearest Sequence Memory -
Recurrent-a -.

~
20 40 60 80 100

Trials
StejM 10 L.",

~: -, _._'
238

Ii· iii :: =L-.'-...:39==5=-___ Steps __ I0_~..,."I0000
.....borof

Figure 2: Comparing Nearest Sequence Memory with three other algorithms: Per
ceptual Distinction Approach, Recurrent-Q and Utile Distinction Memory. In each
case, NSM learns with roughly an order of magnitude fewer steps.

5 EXPERIMENTAL RESULTS

The performance of NSM is compared to three other algorithms using the tasks
chosen by the other algorithms' designers. In each case, NSM learns the task with
roughly an order of magnitude fewer steps. Although NSM learns good policies
quickly, it does not always learn optimal policies. In section 6 we will discuss why
the policies are not always optimal and how NSM could be improved.

The Perceptual Distinctions Approach [Chrisman, 1992] was demonstrated in a
space ship docking application with hidden state. The task was made difficult by
noisy sensors and actions. Some of the sensors returned incorrect values 30% of
the time. Various actions failed 70, 30 or 20% of the time, and when they failed,
resulted in random states. NSM used f3 = 0.2, I = 0.9, k = 8, and N = 1000. PDA
takes almost 8000 steps to learn the task. NSM learns a good policy in less than
1000 steps, although the policy is not quite optimal.

Utile Distinction Memory [McCallum, 1993] was demonstrated on several local per
ception mazes. Unlike most reinforcement learning maze domains, the agent per
ceives only four bits indicating whether there is a barrier to the immediately adjacent
north, east, south and west. NSM used f3 = 0.9, I = 0.9, k = 4, and N = 1000. In
two of the mazes, NSM learns the task in only about 1/20th the time required by
UDM; in the other two, NSM learns mazes that UDM did not solve at all .

Instance-Based State Identification for Reinforcement Learning 383

Recurrent-Q [Lin, 1993] was demonstrated on a robot 2-cup retrieval task. The
env,jronment is deterministic, but the task is made difficult by two nested levels of
hidden state and by providing no reward until the task is completely finished. NSM
used {3 = 0.9, I = 0.9, k = 4, and N = 1000. NSM learns good performance in
about 15 trials , Recurrent-Q takes about 100 trials to reach equivalent performance.

6 DISCUSSION

Nearest Sequence Memory offers much improved on-line performance and fewer
training steps than its predecessors. Why is the improvement so dramatic? I
believe the chief reason lies with the inherent advantage of instance-based methods,
as described in section 2: the key idea behind Instance-Based State Identification
is the recognition that recording raw experience is particularly advantageous when
the agent is learning a policy over a changing state space granularity, as is the case
when the agent is building short-term memory for disambiguating hidden state.

If, instead of using an instance-based technique, the agent simply averages new ex
periences into its current, flawed state space model, the experiences will be applied
to the wrong states, and cannot be reused when the agent reconfigures its state
space. Furthermore, and perhaps even more detrimentally, incoming data is always
interpreted in the context of the flawed state space, always biased in an inappropri
ate way-not simply recorded, kept uncommitted and open to easy reinterpretation
in light of future data.

The experimental results in this paper bode well for instance-based state identifi
cation. Nearest Sequence Memory is simple-if such a simplistic implementation
works as well as it does, more sophisticated approaches may work even better. Here
are some ideas for improvement:

The agent should use a more sophisticated neighborhood distance metric than exact
string match length. A new metric could account for distances between different
percepts instead of considering only exact matches. A new metric could also handle
continuous-valued inputs.

Nearest Sequence Memory demonstrably solves tasks that involve noisy sensation
and action, but it could perhaps handle noise even better if it used some technique
for explicitly separating noise from structure. K-nearest neighbor does not explicitly
discriminate between structure and noise. If the current query point has neighbors
with wildly varying output values, there is no way to know if the variations are due
to noise , (in which case they should all be averaged), or due to fine-grained structure
of. the underlying function (in which case only the few closest should be averaged).
Because NSM is built on k-nearest neighbor, it suffers from the same inability to
methodically separate history differences that are significant for predicting reward
and history differences that are not. I believe this is the single most important
reason that NSM sometimes did not find optimal policies.

Work in progress addresses the structure/noise issue by combining instance-based
state identification with the structure/noise separation method from Utile Dis
tinction Memory [McCallum, 1993]. The algorithm, called Utile Suffix Memory,
uses a tree-structured representation, and is related to work with Ron, Singer and
Tishby's Prediction Suffix Trees, Moore's Parti-game, Chapman and Kaelbling 's

384 R. Andrew McCallum

G-algorithm, and Moore's Variable Resolution Dynamic Programming. See [Mc
Callum, 1994] for more details as well as references to this related work.

Aclmowledgments

This work has benefited from discussions with many colleagues, including: Dana
Ballard, Andrew Moore, Jeff Schneider, and Jonas Karlsson. This material is based
upon work supported by NSF under Grant no. IRI-8903582 and by NIH/PHS under
Grant no. 1 R24 RR06853-02.

References

[Atkeson, 1992] Christopher G. Atkeson. Memory-based approaches to approximating
continuous functions. In M. Casdagli and S. Eubank, editors, Nonlinear Modeling and
Forecasting, pages 503-521. Addison Wesley, 1992.

[Bertsekas and Shreve, 1978] Dimitri. P. Bertsekas and Steven E. Shreve. Stochastic Op
timal Control. Academic Press, 1978.

[Chrisman, 1992] Lonnie Chrisman. Reinforcement learning with perceptual aliasing: The
perceptual distinctions approach. In Tenth Nat'l Conf. on AI, 1992.

[Jaakkola et al., 1995] Tommi Jaakkola, Satinder Pal Singh, and Michael 1. Jordan. Re
inforcement learning algorithm for partially observable markov decision problems. In
Advances of Neural Information Processing Systems 7. Morgan Kaufmann, 1995.

[Lin, 1993] Long-Ji Lin. Reinforcement Learning for Robots Using Neural Networks. PhD
thesis, Carnegie Mellon, School of Computer Science, January 1993.

[Littman, 1994] Michael Littman. Memoryless policies: Theoretical limitations and prac
tical results. In Proceedings of the Third International Conference on Simulation of
Adaptive Behavior: From Animals to Animats, 1994.

[McCallum, 1993] R. Andrew McCallum. Overcoming incomplete perception with utile
distinction memory. In The Proceedings of the Tenth International Machine Learning
Conference. Morgan Kaufmann Publishers, Inc., 1993.

[McCallum, 1994] R. Andrew McCallum. Utile suffix memory for reinforcement learning
with hidden state. TR 549, U. of Rochester, Computer Science, 1994.

[McCallum, 1995] R. Andrew McCallum. Hidden state and reinforcement learning with
instance-based state identification. IEEE Trans. on Systems, Man, and Cybernetics,
1995. (In press) [Earlier version available as U. of Rochester TR 502].

[Moore, 1992] Andrew Moore. Efficient Memory-based Learning for Robot Control. PhD
thesis, University of Cambridge, November 1992.

[Singh et al., 1994] Satinder Pal Singh, Tommi Jaakkola, and Michael 1. Jordan. Model
free reinforcement learning for non-markovian decision problems. In The Proceedings of
the Eleventh International Machine Learning Conference, 1994.

[Teller, 1994] Astro Teller. The evolution of mental models. In Kim Kinnear, editor,
Advances in Genetic Programming, chapter 9. MIT Press, 1994.

[Watkins, 1989] Chris Watkins. Learning from delayed rewards. PhD thesis, Cambridge
University, 1989.

[Whitehead, 1992] Steven Whitehead. Reinforcement Learning for the Adaptive Control
of Perception and Action. PhD thesis, Department of Computer Science, University of
Rochester, 1992.

