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Abstract 

The auditory system of the barn owl contains several spatial maps . 
In young barn owls raised with optical prisms over their eyes, these 
auditory maps are shifted to stay in register with the visual map, 
suggesting that the visual input imposes a frame of reference on 
the auditory maps. However, the optic tectum, the first site of 
convergence of visual with auditory information, is not the site of 
plasticity for the shift of the auditory maps; the plasticity occurs 
instead in the inferior colliculus, which contains an auditory map 
and projects into the optic tectum. We explored a model of the owl 
remapping in which a global reinforcement signal whose delivery is 
controlled by visual foveation. A hebb learning rule gated by rein
forcement learned to appropriately adjust auditory maps. In addi
tion, reinforcement learning preferentially adjusted the weights in 
the inferior colliculus, as in the owl brain, even though the weights 
were allowed to change throughout the auditory system. This ob
servation raises the possibility that the site of learning does not 
have to be genetically specified, but could be determined by how 
the learning procedure interacts with the network architecture . 
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Figure 1: Schematic view of the auditory pathways in the barn owl. 

1 Introduction 

The barn owl relies primarily on sounds to localize prey [6] with an accuracy vastly 
superior to that of humans. Figure 1A illustrates some of the nuclei involved in 
processing auditory signals. The barn owl determines the location of sound sources 
by comparing the time and amplitude differences of the sound wave between the 
two ears. These two cues are combined together for the first time in the shell and 
core of the inferior colliculus (ICc) which is shown at the bottom of the diagram. 
Cells in the ICc are frequency tuned and subject to spatial aliasing. This prevents 
them from unambiguously encoding the position of objects. The first unambiguous 
auditory map is found at the next stage, in the external capsule of the inferior 
colliculus (ICx) which itself projects to the optic tectum (OT). The OT is the 
first subforebrain structure which contains a multimodal spatial map in which cells 
typically have spatially congruent visual and auditory receptive fields. 

In addition, these subforebrain auditory pathways send one major collateral toward 
the forebrain via a thalamic relay. These collaterals originate in the ICc and are 
thought to convey the spatial location of objects to the forebrain [3]. Within the 
forebrain, two major structures have been involved in auditory processing: the 
archistriatum and field L. The archistriatum sends a projection to both the inferior 
colliculus and the optic tectum. 

Knudsen and Knudsen (1985) have shown that these auditory maps can adapt to 
systematic changes in the sensory input. Furthermore, the adaptation appears to 
be under the control of visual input, which imposes a frame of reference on the 
incoming auditory signals. In owls raised with optical prisms, which introduce a 
systematic shift in part of the visual field, the visual map in the optic tectum was 
identical to that found in control animals, but the auditory map in the ICx was 
shifted by the amount of visual shift introduced by the prisms. This plasticity 
ensures that the visual and auditory maps stay in spatial register during growth 
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and other perturbations to sensory mismatch. 

Since vision instructs audition, one might expect the auditory map to shift in the 
optic tectum, the first site of visual-auditory convergence. Surprisingly, Brainard 
and Knudsen (1993b) observed that the synaptic changes took place between the 
ICc and the ICx, one synapse before the site of convergence. 

These observations raise two important questions: First, how does the animal knows 
how to adapt the weights in the ICx in the absence of a visual teaching signal? 
Second, why does the change take place at this particular location and not in the 
aT where a teaching signal would be readily available? 

In a previous model [7], this shift was simulated using backpropagation to broadcast 
the error back through the layers and by constraining the weights changes to the 
projection from the ICc to ICx. There is, however, no evidence for a feedback 
projection between from the aT to the ICx that could transmit the error signal; 
nor is there evidence to exclude plasticity at other synapses in these pathways. 

In this paper, we suggest an alternative approach in which vision guides the remap
ping of auditory maps by controlling the delivery of a scalar reinforcement signal. 
This learning proceeds by generating random actions and increasing the probability 
of actions that are consistently reinforced [1, 5] . In addition, we show that rein
forcement learning correctly predicts the site of learning in the barn owl, namely 
at the ICx-ICc synapse, whereas backpropagation [8] does not favor this location 
when plasticity is allowed at every synapse. This raises a general issue: the site of 
synaptic adjustment might be imposed by the combination of the architecture and 
learning rule, without having to restrict plasticity to a particular synapse. 

2 Methods 

2.1 Network Architecture 

The network architecture of the model based on the barn owl auditory system, 
shown in figure 2A, contains two parallel pathways. The input layer was an 8x21 
map corresponding to the ICc in which units responded to frequency and interaural 
phase differences. These responses were pooled together to create auditory spatial 
maps at subsequent stages in both pathways. The rest of the network contained a 
series of similar auditory maps, which were connected topographically by receptive 
fields 13 units wide. We did not distinguish between field L and the archistriatum 
in the forebrain pathways and simply used two auditory maps, both called FBr. 

We used multiplicative (sigma-pi) units in the aT whose activities were determined 
according to: 

Yi = L,. w~Br yfBr WfkBr yfc:c (1) 
j 

The multiplicative interaction between ICx and FBr activities was an important 
assumption of our model. It forced the ICx and FBr to agree on a particular 
position before the aT was activated. As a result, if the ICx-aT synapses were 
modified during learning, the ICx-FBr synapses had to be changed accordingly. 
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Figure 2: Schematic diagram of weights (white blocks) in the barn owl auditory 
system. A) Diagram of the initial weights in the network. B) Pattern of weights 
after training with reinforcement learning on a prism-induced shift offour units. The 
remapping took place within the ICx and FBr. C) Pattern of weights after training 
with backpropagation. This time the ICx-OT and FBr-OT weights changed. 

Weights were clipped between 5.0 and 0.01, except for the FBr-ICx connections 
whose values were allowed to vary between 8.0 and 0.01. The minimum values were 
set to 0.01 instead of zero to prevent getting trapped in unstable local minima which 
are often associated with weights values of zero. The strong coupling between FBr 
and ICx was another important assumption of the model whose consequence will 
be discussed in the last section. 

Examples were generated by simply activating one unit in the ICc while keeping the 
others to zero, thereby simulating the pattern of activity that would be triggered by 
a single localized auditory stimulus. In all simulations, we modeled a prism-induced 
shift of four units. 

2.2 Reinforcement learning 

We used stochastic units and trained the network using reinforcement learning [1]. 
The weighted sum of the inputs, neti, passed through a sigmoid, f(x) , is interpreted 
as the probability, Pi, that the unit will be active: 

Pi = f(neti) * 0.99 + 0.01 (2) 

were the output of the unit Yi was: 

. _ {a with probability 1 - Pi 
y, - 1 with probability Pi (3) 
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Because of the form of the equation for Pi, all units in the network had a small 
probability (0.01) of being spontaneously active in the absence of any inputs. This 
is what allowed the network to perform a stochastic search in action space to find 
which actions were consistently associated with positive reinforcement. 

We ensured that at most one unit was active per trial by using a winner-take-all 
competition in each layer . 

Adjustable weights in the network were updated after each training examples with 
hebb-like rule gated by reinforcement: 

(4) 

A trial consisted in choosing a random target location for auditory input (ICc) and 
the output of the OT was used to generate a head movement . The reinforcement , 
r , was then set to 1 for head movements resulting in the foveation of the stimulus 
and to -0.05 otherwise. 

2.3 Backpropagation 

For the backpropagation network , we used deterministic units with sigmoid activa
tion functions in which the output of a unit was given by: 

(5) 

where neti is the weighted sum of the inputs as before. 

The chain rule was used to compute the partial derivatives of the squared error, 
E , with respect to each weights and the weights were updated after each training 
example according to: 

(6) 

The target vectors were similar to the input vectors, namely only one OT units was 
required to be activated for a given pattern, but at a position displaced by 4 units 
compared to the input . 

3 Results 

3.1 Learning site with reinforcement 

In a first set of simulation we kept the ICc-ICx and ICc-FBr weights fixed. Plasticity 
was allowed at these site in later simulations. 

Figure 2A shows the initial set of weights before learning starts. The central diago
nal lines in the weight diagrams illustrate the fact that each unit receives only one 
non-zero weight from the unit in the layer below at the same location. 
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There are two solutions to the remapping: either the weights change within the 
ICx and FBr, or from the ICx and the FBr to the ~T. As shown in figure 2B , 
reinforcement learning converged to the first solution. In contrast, the weights 
between the other layers were unaltered, even though they were allowed to change. 

To prove that the network could have actually learned the second solution, we 
trained a network in which the ICc-ICx weights were kept fixed . As we expected, 
the network shifted its maps simultaneously in both sets of weights converging onto 
the OT, and the resulting weights were similar to the ones illustrated in figure 2C. 
However, to reach this solution, three times as many training examples were needed. 

The reason why learning in the ICx and FBr were favored can be attributed to 
probabilistic nature of reinforcement learning. If the probability of finding one 
solution is p, the probability of finding it twice independently is p2. Learning in the 
ICx and FBR is not independent because of the strong connection from the FBr to 
the ICx. When the remapping is learned in the FBR this connection automatically 
remapped the activities in the ICx which in turn allows the ICx-ICx weights to 
remap appropriately. In the OT on the other hand, the multiplicative connection 
between the ICx and FBr weights prevent a cooperation between this two sets of 
weights. Consequently, they have to change independently, a process which took 
much more training. 

3.2 Learning at the ICc-ICx and ICc-FBr synapses 

The aliasing and sharp frequency tuning in the response of ICc neurons greatly 
slows down learning at the ICc-ICx and ICc-FBr synapses. We found that when 
these synapses were free to change, the remapping still took place within the ICx 
or FBr (figure 3). 

3.3 Learning site with backpropagation 

In contrast to reinforcement learning, backpropagation adjusted the weights in two 
locations: between the ICx and the OT and between the Fbr and OT (figure 2C). 
This is the consequence of the tendency of the backpropagation algorithm to first 
change the weights closest to where the error is injected. 

3.4 Temporal evolution of weights 

Whether we used reinforcement or supervised learning, the map shifted in a very 
similar way. There was a simultaneous decrease of the original set of weights with a 
simultaneous increase of the new weights, such that both sets of weights coexisted 
half way through learning. This indicates that the map shifted directly from the 
original setting to the new configuration without going through intermediate shifts. 

This temporal evolution of the weights is consistent the findings of Brainard and 
Knudsen (1993a) who found that during the intermediate phase of the remapping, 
cells in the inferior colli cuI us typically have two receptive fields. More recent work 
however indicates that for some cells the remapping is more continuous(Brainard 
and Knudsen , personal communication) , a behavior that was not reproduced by 
either of the learning rule. 
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Figure 3: Even when the ICc-ICx weights are free to change, the network update 
the weights in the ICx first. A separate weight matrix is shown for each isofrequency 
map from the ICc to ICx. The final weight matrices were predominantly diagonal; 
in contrast, the weight matrix in ICx was shifted. 

4 Discussion 

Our simulations suggest a biologically plausible mechanism by which vision can 
guide the remapping of auditory spatial maps in the owl's brain. Unlike previous 
approaches, which relied on visual signals as an explicit teacher in the optic tec
tum [7], our model uses a global reinforcement signal whose delivery is controlled by 
the foveal representation of the visual system. Other global reinforcement signals 
would work as well. For example, a part of the forebrain might compare auditory 
and visual patterns and report spatial mismatch between the two. This signal could 
be easily incorporated in our network and would also remap the auditory map in 
the inferior colli cuI us. 

Our model demonstrates that the site of synaptic plasticity can be constrained 
by the interaction between reinforcement learning and the network architecture. 
Reinforcement learning converged to the most probably solution through stochastic 
search. In the network, the strong lateral coupling between ICx and FBr and the 
multiplicative interaction in the OT favored a solution in which the remapping took 
place simultaneously in the ICx and FBr. A similar mechanism may be at work 
in the barn owl's brain. Colaterals from FBr to ICx are known to exist, but the 
multiplicative interaction has not been reported in the barn owl optic tectum. 

Learning mechanisms may also limit synaptic plasticity. NMDA receptors have been 
reported in the ICx, but they might not be expressed at other synapses. There may, 
however, be other mechanisms for plasticity. 

The site of remapping in our model was somewhat different from the existing ob
servations. We found that the change took place within the ICx whereas Brainard 
and Knudsen [3] report that it is between the ICc and the ICx. A close examination 
of their data (figure 11 in [3]) reveals that cells at the bottom of ICx were not 
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remapped, as predicted by our model, but at the same time, there is little anatom
ical or physiological evidence for a functional and hierarchical organization within 
the ICx. Additional recordings are need to resolve this issue. We conclude that 
for the barn owl's brain, as well as for our model, synaptic plasticity within ICx 
was favored over changes between ICc and ICx. This supports the hypothesis that 
reinforcement learning is used for remapping in the barn owl auditory system. 
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