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Abstract

We present a new method for obtaining the response function G
and its average G from which most of the properties of learning
and generalization in linear perceptrons can be derived. We first
rederive the known results for the ‘thermodynamic limit’ of infinite
perceptron size N and show explicitly that G is self-averaging in
this limit. We then discuss extensions of our method to more gen-
eral learning scenarios with anisotropic teacher space priors, input
distributions, and weight decay terms. Finally, we use our method
to calculate the finite N corrections of order 1/N to G and discuss
the corresponding finite size effects on generalization and learning
dynamics. An important spin-off is the observation that results
obtained in the thermodynamic limit are often directly relevant to
systems of fairly modest, ‘real-world’ sizes.

1 INTRODUCTION

One of the main areas of research within the Neural Networks community is the issue
of learning and generalization. Starting from a set of training examples (normally
assumed to be input-output pairs) generated by some unknown ‘teacher’ rule V, one
wants to find, using a suitable learning or training algorithm, a student N (read
‘Neural Network’) which generalizes from the training set, i.e., predicts the outputs
corresponding to inputs not contained in the training set as accurately as possible.
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If the inputs are N-dimensional vectors x € R" and the outputs are scalars y € R,
then one of the simplest functional forms that can be assumed for the student N is
the linear perceptron, which is parametrized in terms of a weight vector w, € RV
and implements the linear input-output mapping

yn(x) = 715“"3;"- (1)

A commonly used learning algorithm for the linear perceptron is gradient descent
on the training error, i.e., the error that the student A" makes on the training set.
Using the standard squared output deviation error measure, the training error for a
given set of p training examples {(x*,y*),u=1...p}is Ey = 3 %(y“—;:,.rN(:vc’“))2 =

3 Y= wZlx*/V/N)?. To prevent the student from fitting noise in the training

data, a quadratic weight decay term —;—,\wi, is normally added to the training error,
with the value of the weight decay parameter A determining how strongly large
weight vectors are penalized. Gradient descent is thus performed on the function
E=F + %/\wf,, and the corresponding learning dynamics is, in a continuous time
approximation, dw,/dt = —V4FE. As discussed in detail by Krogh and Hertz
(1992), this results in an exponential approach of w, to its asymptotic value, with
decay constants given by the eigenvalues of the matrix M, defined by (1 denotes
the N x N identity matrix)

My, =AL+A, A=4 E# x#(x#)T,

To examine what generalization performance is achieved by the above learning
algorithm, one has to make an assumption about the functional form of the teacher.
The simplest such assumption is that the problem is learnable, i.e., that the teacher,
like the student, is a linear perceptron. A teacher V is then specified by a weight
vector w,, and maps a given input x to the output y,(x) = wlx/v/N. We assume
that the test inputs for which the student is asked to predict the corresponding
outputs are drawn from an isotropic Gaussian distribution, P(x) exp(—%xQ). The
generalization error, i.e., the average error that a student A’ makes on a random
input when compared to teacher V, is given by

5= %((y""’(x) - yv(x))z)f’(x] = Elﬁ(wx —wy)2. (2)

Inserting the learning dynamics w, = w,(t), the generalization acquires a time
dependence, which in its exact form depends on the specific training set, teacher, and
initial value of the student weight vector, w, (¢ = 0). We shall confine our attention
to the average of this time-dependent generalization error over all possible training
sets and teachers; to avoid clutter, we write this average simply as ¢4(t). We assume
that the inputs x* in the training set are chosen independently and randomly from
the same distribution as the test inputs, and that the corresponding training outputs
are the teacher outputs corrupted by additive noise, y* = y,(x*)+n*, where the p#
have zero mean and variance 0. If we further assume an isotropic Gaussian prior on
the teacher weight vectors, P(w,) o exp(—3w32), then the average generalization
error for t — oo is (Krogh and Hertz, 1992)

oG
€g(t = 00) = % 2G4+ Mo? - ,\)5] : (3)

where G is the average of the so-called response function over the training inputs:
G =(G9)p(x+)) G=ntr ML (4)
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The time dependence of the average generalization error for finite but large ¢ is an
exponential approach to the asymptotic value (3) with decay constant A + amin,
where apni, is the lowest eigenvalue occurring in the average eigenvalue spectrum of
the input correlation matrix A (Krogh and Hertz, 1992). This average eigenvalue
spectrum, which we denote by p(a), can be calculated from the average response
function according to (Krogh, 1992)

1.
p(@) = 7 lim ImGla—amic, )

where we have assumed p(a) to be normalized, [dap(a) = 1.

Egs. (3,5) show that the key quantity determining learning and generalization in
the linear perceptron is the average response function G defined in (4). This
function has previously been calculated in the ‘thermodynamic limit’, N — oo
at @ = p/N = const., using a diagrammatic expansion (Hertz et al., 1989) and the
replica method (Opper, 1989, Kinzel and Opper, 1991). In Section 2, we present
what we believe to be a much simpler method for calculating G, based only on
simple matrix identities. We also show explicitly that G is self-averaging in the
thermodynamic limit, which means that the fluctuations of G around its average G
become vanishingly small as N — co. This implies, for example, that the gener-
alization error is also self-averaging. In Section 3 we extend the method to more
general cases such as anisotropic teacher space priors and input distributions, and
general quadratic penalty terms. Finite size effects are considered in Section 4,
where we calculate the O(1/N) corrections to G, €g(t — 00) and p(a). We discuss
the resulting effects on generalization and learning dynamics and derive explicit con-
ditions on the perceptron size N for results obtained in the thermodynamic limit
to be valid. We conclude in Section 5 with a brief summary and discussion of our
results.

2 THE BASIC METHOD

Our method for calculating the average response function G is based on a recursion
relation relating the values of the (unaveraged) response function G for p and p+ 1
training examples. Assume that we are given a set of p training examples with
corresponding matrix M,,. By adding a new training example with input x, we
obtain the matrix M}, = M, + #xxT. It is straightforward to show that the
inverse of MY, can be expressed as

1 af=1ooTAg—-1
'f\TMN xx' My

+\° M-l =
()™ =zt - O

(One way of proving this identity is to multiply both sides by M}, and exploit the
fact that MfMy! = 1 4+ &xx”M'.) Taking the trace, we obtain the following
recursion relation for G:

1 %xTM;,zx

g(P+ 1) = G(p) - E T %XTM;}II.

(6)

Now denote z; = T{,—xTM;‘x (i = 1,2). With x drawn randomly from the assumed
input distribution P(x) ox exp(—3x?), the z; can readily be shown to be random
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variables with means and (co-)variances
(z) = 2tr My, (AzlAz) = 2t My ™.
Combining this with the fact that tr M3* < NA~% = O(N), we have that the

fluctuations Az; of the z; around their average values are O(1/v/N); inserting this
into (6), we obtain

1 Atr M2

Gp+1) = G(p)— N T:W + O(N_alz)
= 60+ 3R g +OW ). ™

Starting from G(0) = 1/A, we can apply this recursion p = aN times to obtain
G(p) up to terms which add up to at most O(pN~3/2) = O(1/v/N). This shows
that G is self-averaging in the thermodynamic limit: whatever the training set, the
value of G will always be the same up to fluctuations of O(1/v/N). In fact, we shall
show in Section 4 that the fluctuations of G are only O(1/N). This means that the
O(N ~3/?) fluctuations from each iteration of (7) are only weakly correlated, so that
they add up like independent random variables to give a total fluctuation for G(p)
of O((p/N?)"/?) = O(1/N).

We have seen that, in the thermodynamic limit, G is identical to its average G
because its fluctuations are vanishingly small. To calculate the value of G in the
thermodynamic limit as a function of & and A, we insert the relation G(p+1)-G(p) =
40G(a)/da+ O(1/N?) into eq. (7) (with G replaced by G) and neglect all finite N
corrections. This yields the partial differential equation

0G 094G 1

da AN1+G 0 ®)
which can readily be solved using the method of characteristic curves (see, e.g.,
John, 1978). Using the initial condition G|a=0 = 1/ gives /(1 + G) = 1/G — A,
which leads to the well-known result (see, e.g., Hertz et al., 1989)

G=%(1—a—a\+\/(l—(x—,\)2+4z\). (9)

In the complex A plane, G has a pole at A = 0 and a branch cut arising from
the root; according to eq. (5), these singularities determine the average eigenvalue
spectrum p(a) of A, with the result (Krogh, 1992)

(@) = (1~ )01 ~ @)8(a) + 5—/(ay —a)(a—a), (10)

where O(z) is the Heaviside step function, ©(z) = 1 for 2 > 0 and 0 otherwise.
The root in eq. (10) only contributes when its argument is non-negative, i.e., for a
between the ‘spectral limits’ a_ and ay, which have the values ay = (1 /a)?%.

3 EXTENSIONS TO MORE GENERAL LEARNING
SCENARIOS

We now discuss some extensions of our method to more general learning sce-
narios. First, consider the case of an anisotropic teacher space prior, P(w,)
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exp(—— T®5'wy), with symmetric positive definite X,,. This leaves the defini-
tion oi2 the response function unchanged eq. (3), however, has to be replaced by
eg(t — 00) = 1/2{0?G + A[o? — A(7;tr 2,))]0G/9A}.

As a second extension, assume that the inputs are drawn from an anisotropic distri-
bution, P(x) exp(-—xTE 1x). It can then be shown that the asymptotic value
of the average generahzatlon error is still given by eq. (3) if the response function is
redefined to be G = §tr M. This modified response function can be calculated

as follows: First we rewrit.e G as tr(AB~! + A)~!, where A = & S (ETxHM s
the correlation matrix of the transformed input examples X# = £~1/2x#. Since the
x# are distributed according to P(X*) « exp(—3(x*)?), the problem is thus reduced
to finding the response function G = %tr (L + A)~! for isotropically distributed
inputs and L = AX~!. The recursion relations between G(p + 1) and G(p) derived
in the previous section remain valid, and result, in the thermodynamic limit, in a
differential equation for the a.verage response function G analogous to eq. (8). The
initial condition is now Gla=o = #tr L™!, and one obtains an implicit equation for

G

1 _l
= —1 1

G N(L+1+G) ’ (1)
where in the case of an anisotropic input distribution considered here, L = AX~1.
If ¥ has a particularly simple form, then the dependence of G on a and A can be
obtained analytically, but in general eq. (11) has to solved numerically.

Fmally, one can also investigate the effect of a general quadratic weight decay term,

%w ~ AW, , in the energy function F. The expresswn for the average generallzatlon
error becomes more cumbersome than eq. (3) in this case, but t.he result can still be
expressed in terms of the average response function G = (G) = (&tr (A +A)7Y),

which can be obtained as the solution of eq. (11) for L =

4 FINITE N CORRECTIONS

So far, we have focussed attention on the thermodynamic limit of perceptrons of
infinite size N. The results are clearly only approximately valid for real, finite
systems, and it is therefore interesting to investigate corrections for finite N. This
we do in the present section by calculating the O(1/N) corrections to G and p(a).
For details of the calculations and results of computer simulations which support
our theoretical analysis, we refer the reader to (Sollich, 1994).

First note that, for A = 0, the exact result for the average response function is
Glr=0 = (@ =1 =1/N)~! for & > 1 4 1/N (see, e.g., Eaton, 1983), which clearly
admits a series expansion in powers of 1/N. We assume that a similar expansion
also exists for nonzero A, and write

G = Go+ G1/N + O(1/N?). (12)

G is the value of G in the thermodynamic limit as given by eq. (9). For finite N, the
fluctuations AG = G—G of G around its average value G become relevant; for A = 0,
the variance of these fluctuations is known to have a power series expansion in 1/N,
and again we assume a similar expansion for finite A, ((AG)?) = A%2/N + O(1/N?),
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where the first term is O(1/N) and not O(1) because, as discussed in Section 2, the
fluctuations of G for large N are no greater than O(1/v/N). To calculate G; and A2,
one starts again from the recursion relation (6), now expanding everything up to
second order in the fluctuation quantities Az; and AG. Averaging over the training
inputs and collecting orders of 1/N yields after some straightforward algebra the
known eq. (8) for G and two linear partial differential equations for G; and A?,
the latter obtained by squaring both sides of eq. (6). Solving these, one obtains

Gi(1- )G
= Gall = 30 - g). (13)
(1+ AGY)
In the limit A — 0, Gy = 1/(a — 1)? consistent with the exact result for G quoted
above; likewise, the result A2 = 0 agrees with the exact series expansion of the

variance of the fluctuations of G for A = 0, which begins with an O(1/N?) term
(see, e.g., Barber et al., 1994).
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Figure 1: Average generalization error: Result for N — co, €40, and coefficient of
O(1/N) correction, €g,1. (a) Noise free teacher, 0% = 0. (b) Noisy teacher, o = 0.5.
Curves are labeled by the value of the weight decay parameter .

From the 1/N expansion (12) of G we obtain, using eq. (3), a corresponding ex-
pansion of the asymptotic value of the average generalization error, which we write
as €g(t — 00) = €g,0 + €g,1/N + O(1/N?). It follows that the thermodynamic limit
result for the average generalization error, €0, is a good approximation to the true
result for finite N as long as N > N. = |eg1/¢€g,0|- In Figure 1, we plot €z and
€g,1 for several values of A and o2. It can be seen that the relative size of the first
order correction |€g1/€g 0] and hence the critical system size N, for validity of the
thermodynamic limit result is largest when A is small. Exploiting this fact, N, can
be bounded by 1/(1 — a) for @ < 1 and (3a + 1)/[a(a — 1)] for a > 1. It follows,
for example, that the critical system size N, is smaller than 5 as long as o < 0.8
or @ > 1.72, for all A and ¢2?. This bound on N, can be tightened for non-zero
A; for A > 2, for example, one has N, < (2A — 1)/(A + 1)? < 1/3. We have thus
shown explicitly that thermodynamic limit calculations of learning and generaliza-
tion behaviour can be relevant for fairly small, ‘real-world’ systems of size N of the
order of a few tens or hundreds. This is in contrast to the widespread suspicion
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among non-physicists that the methods of statistical physics give valid results only
for huge system sizes of the order of N ~ 1023,

(a) (b)

P1
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a_ a4 G_F—_jﬂ.p

Figure 2: Schematic plot of the average eigenvalue spectrum p(a) of the input
correlation matrix A. (a) Result for N — o0, pg(a). (b) O(1/N) correction, p;(a).
Arrows indicate §-peaks and are labeled by the corresponding heights.

We now consider the O(1/N) correction to the average eigenvalue spectrum of the
input correlation matrix A. Setting p(a) = po(a) + p1(a)/N + O(1/N?), po(a) is
the N — oo result given by eq. (10), and from eq. (13) one derives

pi(a) = -5(a—a+)-+~ é( =)= =—

Figure 2 shows sketches of po(a) and p;(a). Note that [dap;(a) = 0 as expected
since the normalization of p(a) is independent of N. Furthermore, there is no
O(1/N) correction to the é-peak in pp(a) at a = 0, since this peak arises from the
N — p zero eigenvalues of A for @ = p/N < 1 and therefore has a height of 1 — « for
any finite N. The é-peaks in p;(a) at the spectral limits ay and a_ are an artefact
of the truncated 1/N expansion: p(a) is determined by the singularities of G as
a function of A, and the location of these singularities is only obtained correctly
by resumming the full 1/N expansion. The §-peaks in p;(a) can be interpreted
as ‘precursors’ of a broadening of the eigenvalue spectrum of A to values which,
when the whole 1/N series is resummed, will lie outside the N — oo spectral
range [a—,a4]. The negative term in p;(a) represents the corresponding ‘flattening’
of the eigenvalue spectrum between a_ and ay. We can thus conclude that the
average eigenvalue spectrum of A for finite N will be broader than for N — oo,
which means in particular that the learning dynamics will be slowed down since the
smallest eigenvalue apmin of A will be smaller than a_. From our result for p;(a) we
can also deduce when the N — oo result pg(a) is valid for finite N; the condition
turns out to be N > a/[(ay — a)(a — a_)]. Consistent with our discussion of the
broadening of the eigenvalue spectrum of A, N has to be larger for a near the
spectral limits a_, ay if pg(a) is to be a good approximation to the finite N average
eigenvalue spectrum of A.
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5 SUMMARY AND DISCUSSION

We have presented a new method, based on simple matrix identities, for calculating
the response function G and its average G which determine most of the properties
of learning and generalization in linear perceptrons. In the thermodynamic limit,
N — 00, we have recovered the known result for G and have shown explicitly that G
is self-averaging. Extensions of our method to more general learning scenarios have
also been discussed. Finally, we have obtained the O(1/N) corrections to G and the
corresponding corrections to the average generalization error, and shown explicitly
that the results obtained in the thermodynamic limit can be valid for fairly small,
‘real-world’ system sizes N. We have also calculated the O(1/N) correction to the
average eigenvalue spectrum of the input correlation matrix A and interpreted it
in terms of a broadening of the spectrum for finite N, which will cause a slowing
down of the learning dynamics.

We remark that the O(1/N) corrections that we have obtained can also be used
in different contexts, for example for calculations of test error fluctuations and
optimal test set size (Barber et al., 1994). Another application is in an analysis of
the evidence procedure in Bayesian inference for finite N, where optimal values of
‘hyperparameters’ like the weight decay parameter A are determined on the basis of
the training data (G Marion, in preparation). We hope, therefore, that our results
will pave the way for a systematic investigation of finite size effects in learning and
generalization.
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