
A Study of Parallel Perturbative
Gradient Descent

D. Lippe· J. Alspector
Bellcore

Morristown, NJ 07960

Abstract

We have continued our study of a parallel perturbative learning
method [Alspector et al., 1993] and implications for its implemen
tation in analog VLSI. Our new results indicate that, in most cases,
a single parallel perturbation (per pattern presentation) of the func
tion parameters (weights in a neural network) is theoretically the
best course. This is not true, however, for certain problems and
may not generally be true when faced with issues of implemen
tation such as limited precision. In these cases, multiple parallel
perturbations may be best as indicated in our previous results.

1 INTRODUCTION

Motivated by difficulties in analog VLSI implementation of back-propagation
[Rumelhart et al., 1986] and related algorithms that calculate gradients based on
detailed knowledge of the neural network model, there were several similar re
cent papers proposing to use a parallel [Alspector et al., 1993, Cauwenberghs, 1993,
Kirk et al., 1993] or a semi-parallel [Flower and Jabri, 1993] perturbative technique
which has the property that it measures (with the physical neural network) rather
than calculates the gradient. This technique is closely related to methods of stochas
tic approximation [Kushner and Clark, 1978] which have been investigated recently
by workers in fields other than neural networks. [Spall, 1992] showed that averaging
multiple parallel perturbations for each pattern presentation may be asymptotically
preferable in the presence of noise. Our own results [Alspector et al., 1993] indicated

·Present address: Dept. of EECSj MITj Cambridge, MA 02139; dalippe@mit.edu

804 D. Lippe, 1. Alspector

that multiple parallel perturbations are also preferable when only limited precision
is available in the learning rate which is realistic for a physical implementation. In
this work we have investigated whether multiple parallel perturbations for each pat
tern are non-asymptotically preferable theoretically (without noise). We have also
studied this empirically, to the limited degree that simulations allow, by removing
the precision constraints of our previous work.

2 GRADIENT ESTIMATION BY PARALLEL WEIGHT
PERTURBATION

Following our previous work, one can estimate the gradient of the error, E(w), with
respect to any weight, Wi, by perturbing Wi by 6w1 and measuring the change in
the output error, 6E, as the entire weight vector, W, except for component Wi is
held constant.

6E E(w + 6;1) - E(w)
6w1 6Wi

We now consider perturbing all weights simultaneously. However, we wish to have
the perturbation vector, 6w, chosen uniformly on a hypercube. Note that this
requires only a random sign multiplying a fixed perturbation and is natural for
VLSI using a parallel noise generator [Alspector et al., 1991J.

This leads to the approximation (ignoring higher order terms)

w
6E 8E 2:(8E) (6Wi) - - -+ - -
6w· - 8w· 8w· 6w·· , 'i¢1] ,

(1)

The last term has expectation value zero for random and independently distributed
6w1• The weight change rule

where 1] is a learning rate, will follow the gradient on the average but with consid
erable noise.

For each pattern, one can reduce the variance of the noise term in (1) by repeating
the random parallel perturbation many times to improve the statistical estimate. If
we average over P perturbations, we have

where p indexes the perturbation number.

A Study of Parallel Perturbative Gradient Descellf 805

3 THEORETICAL RELATIVE EFFICIENCY

3.1 BACKGROUND

Spall [Spall, 1992] shows in an asymptotic sense that multiple perturbations may be
faster if only a noisy measurement of E(tV) is available, and that one perturbation
is superior otherwise. His results are asymptotic in that they compare the rate of
convergence to the local minimum if the algorithms run for infinite time. Thus, his
results may only indicate that 1 perturbation is superior close to a local minimum.
Furthermore, his result implicitly assumes that P perturbations per weight update
takes P times as long as 1 perturbation per weight update. Experience shows
that the time required to present patterns to the hardware is often the bottleneck
in VLSI implementations of neural networks [Brown et al., 1992]. In a hardware
implementation of a perturbative learning algorithm, a few perturbations might be
performed with no time penalty while waiting for the next pattern presentation.

The remainder of this section sketches an argument that multiple perturbations
may be desirable for some problems in a non-asymptotic sense, even in a noise
free environment and under the assumption of a multiplicative time penalty for
performing multiple perturbations. On the other hand, the argument also shows
that there is little reason to believe in practice that any given problem will be
learned more quickly by multiple perturbations. Space limitations prevent us from
reproducing the full argument and discussion of its relevance which can be found
in [Lippe, 1994].

The argument fixes a point in weight space and considers the expectation value of
the change in the error induced by one weight update under both the 1 pertur
bation case and the multiple perturbation case. [Cauwenberghs, 1994] contains a
somewhat related analysis of the relative speed of one parallel perturbation and
weight perturbation as described in [Jabri and Flower, 1991]. The analysis is only
truly relevant far from a local minimum because close to a local minimum the vari
ance of the change of the error is as important as the mean of the change of the
error.

3.2 Calculations

If P is the number of perturbations, then our learning rule is

-'TJ ~ 6E(p)
~Wi = P L.J~.

P=1 6wi

If W is the number of weights, then ~E, calculated to second order in 'TJ, is

w 8E 1 W W 82E

~E = '" -8 ~Wi + - '" '" 8 8 ~Wi~Wj. L.J W· 2 L.J L.J W· W ·
i=l' i=l j=l • J

Expanding 6E(p) to second order in (j (where 6Wi = ±(j), we obtain

W 8E W W 8 2
6E(p) = '" -6w~P) + ! "'" E 6w~P)6w(P).

L.J 8w' J 2 L.J L.J 8w' 8wk J k
j=l J j=l k=l J

(2)

(3)

(4)

806 D. Lippe, 1. Alspector

[Lippe, 1994] shows that combining (2)-(4), retaining only first and second order
terms, and taking expectation values gives

2

< l:1E >= -TJX + ~ (Y + PZ) (5)

where

x w (8E)2
L 8w' '
i=l '

Z

Y

Note that first term in (5) is strictly less than or equal to 0 since X is a sum of
squares l . The second term, on the other hand, can be either positive or negative.
Clearly then a sufficient condition for learning is that the first term dominates the
second term. By making TJ small enough, we can guarantee that learning occurs.
Strictly speaking, this is not a necessary condition for learning. However, it is
important to keep in mind that we are only focusing on one point in weight space. If,
at this point in weight space, < l:1E > is negative but the second term's magnitude
is close to the first term's magnitude, it is not unlikely that at some other point
in weight space < l:1E > will be positive. Thus, we will assume that for efficient
learning to occur, it is necessary that TJ be small enough to make the first term
dominate the second term.

Assume that some problem can be successfully learned with one perturbation, at
learning rate TJ(I). Then the first order term in (5) dominates the second order
terms. Specifically, at any point in weight space we have, for some large constant
J1.,

TJ(I)X ~ J1.TJ(I)2IY + ZI
In order to learn with P perturbations, we apparently need

TJ(P)X ~ J1. TJ(~)2 IY + P ZI (6)

The assumption that the first order term of (5) dominates the second order terms
implies that convergence time is proportional to ,.lp), Thus, learning is more effi
cient in the multiple perturbation case if

J1.TJ(P) > J1.TJ(I)
P

(7)

It turns out, as shown in [Lippe, 1994] that the conditions (6) and (7) can be met
simultaneously with multiple perturbations if =f ~ 2.

lIf we are at a stationary point then the first term in (5) is O.

A Study of Parallel Perturbative Gradient Descent 807

It is shown in [Lippe, 1994], by using the fact that the Hessian of a quadratic
function with a minimum is positive semi-definite, that if E is guadratic and has
a minimum, then Y and Z have the same sign (and hence =f < 2). Any well
behaved function acts quadratically sufficiently close to a stationary point. Thus,
we can not get < flE > more than a factor of P larger by using P perturbations
near local minima of well behaved functions. Although, as mentioned earlier, we
are entirely ignoring the issue of the variance of flE, this may be some indication
of the asymptotic superiority of 1 perturbation.

3.3 Discussion of Results

The result that multiple perturbations are superior when -i ~ 2 may seem some
what mysterious . It sheds some light on our answer to rewrite (5) as

Y
< flE >= -"IX + "I2(p + Z).

For strict gradient descent, the corresponding equation is

< flE >= flE = -"IX + "I2Z.

The difference between strict gradient descent and perturbative gradient descent,
on average, is the second order term "I2~. This is the term which results from not
following the gradient exactly, and it Obviously goes down as P goes up and the
gradient measurement becomes more accurate. Thus, if Z and Y have different
signs, P can be used to make the second order term disappear. There is no way
to know whether this situation will occur frequently. Furthermore, it is important
to keep in mind that if Y is negative and Z is positive, then raising P may make
the magnitude of the second order term smaller, but it makes the term itself larger.
Thus, in general, there is little reason to believe that multiple perturbations will
help with a randomly chosen problem.

An example where multiple perturbations help is when we are at a point where
the error surface is convex along the gradient direction, and concave in most other
directions. Curvature due to second derivative terms in Y and Z help when the
gradient direction is followed, but can hurt when we stray from the gradient. In
this case, Z < 0 and possibly Y > 0, so multiple perturbations might be preferable
in order to follow the gradient direction very closely.

4 SIMULATIONS OF SINGLE AND MULTIPLE
PARALLEL PERTURBATION

4.1 CONSTANT LEARNING RATES

The second order terms in (5) can be reduced either by using a small learning rate,
or by using more perturbations, as discussed briefly in [Cauwenberghs, 1993]. Thus,
if "I is kept constant, we expect a minimum necessary number of perturbations in
order to learn. This in itself might be of importance in a limited precision imple
mentation. If there is a non-trivial lower bound on "I, then it might be necessary
to use multiple perturbations in order to learn. This is the effect that was noticed
in [Alspector et al., 1993]. At that time we thought that we had found empirically

808 D. Lippe, J. Alspector

Table 1: Running times for the first initial weight vector
P TJ Time for < .1 Time for < .5
1 .0005 1,121,459 32,179
1 .001 831 , 684 18,534
1 .002 784, 768 11,008
1 .003 4 94,029 9,933
1 .004 1,695,974 9,728
7 .00625 707,840 23,834
7 .008 583,654 16,845
7 .0125 922,880 13,261
7 .025 1,010,355 12,006
7 .035 Not tested 17,024

that multiple perturbations were necessary for learning. The problem was that we
failed to decrease the learning rate with the number of perturbations.

4.2 EMPIRICAL RELATIVE EFFICIENCY OF SINGLE AND
MULTIPLE PERTURBATION ALGORITHMS

Section 3 showed that, in theory, multiple perturbations might be faster than 1 per
turbation. We investigated whether or not this is the case for the 7 input hamming
error correction problem as described in [Biggs, 1989]. This is basically a nearest
neighbor problem. There exist 16 distinct 7 bit binary code words. When presented
with an arbitrary 7 bit binary word, the network is to output the code word with
the least hamming distance from the input.

After preliminary tests with 50, 25, 7, and 1 perturbation, it seemed that 7 per
turbations provided the fastest learning, so we concentrated on running simulations
for both the 1 perturbation and the 7 perturbation case. Specifically, we chose two
different (randomly generated) initial weight vectors, and five different seeds for the
pseudo-random function used to generate the bWi. For each of these ten cases, we
tested both 1 perturbation and 7 perturbations with various learning rates in order
to obtain the fastest possible learning.

The 128 possible input patterns were repeatedly presented in order. We investigated
how many pattern presentations were necessary to drive the MSE below .1 and
how many presentations were necessary to drive it below .5. Recalling the theory
developed in section 3, we know that multiple perturbations can be helpful only far
away from a stationary point. Thus, we expected that 7 perturbations might be
quicker reaching .5 but would be slower reaching .1.

The results are summarized in tables 1 and 2. Each table summarizes information
for a different initial weight vector. All of the data presented are averaged over 5
runs, one with each of the different random seeds. The two columns labeled "Time
for < .5" and "Time for < .1" are adjusted according to the assumption that one
weight update at 7 perturbations takes 7 times as long as one weight update at
1 perturbation. In each table, the following four numbers appear in italics: the
shortest time to reach .1 with 1 perturbation, the shortest time to reach .1 with 7
perturbations, the shortest time to reach .5 with 1 perturbation, and the shortest
time to reach .5 with 7 perturbations.

7 perturbations were a loss in three out of four of the experiments. Surprisingly,

A Study of Parallel Perturbative Gradient Descent 809

Table 2: Running times for the second initial weight vector
l' 'T/ TIme for < .1 TIme for < .5
1 .001 928,236 22,133
1 .002 719 , 078 12,817
1 .003 154,139 10,675
1 .004 1,603,354 11,150
1 .00625 629 , 530 21,059
1 .008 611,610 19,112
1 .0125 912,333 15,949
1 .025 1,580,442 14,515
1 .035 Not tested 11,141

the one time that multiple perturbations helped was in reaching .1 from the second
initial weight vector. There are several possible explanations for this. To begin
with, these learning times are averages over only five simulations each, which makes
their statistical significance somewhat dubious. Unfortunately, it was impractical
to perform too many experiments as the data obtained required 180 computer sim
ulations, each of which sometimes took more than a day to complete.

Another possible explanation is that .1 may not be "asymptotic enough." The
numbers .5 and .1 were chosen somewhat arbitrarily to represent non-asymptotic
and asymptotic results. However, there is no way of predicting from the theory how
close the error must be to its minimum before asymptotic results become relevant.

The fact that 1 perturbation outperformed 7 perturbations in three out of four cases
is not surprising. As explained in section 3, there is in general no reason to believe
that multiple perturbations will help on a randomly chosen problem.

5 CONCLUSION

Our results show that, under ideal computational conditions, where the learning
rate can be adjusted to proper size, that a single parallel perturbation is, except
for unusual problems, superior to multiple parallel perturbations. However, under
the precision constraints imposed by analog VLSI implementation, where learning
rates may not be adjustable and presenting a pattern takes longer than performing
a perturbation, multiple parallel perturbations are likely to be the best choice.

Acknowledgment

We thank Gert Cauwenberghs and James Spall for valuable and insightful discus
sIons.

References

[Alspector et al., 1991] Alspector, J., Gannett, J. W., Haber, S., Parker, M. B.,
and Chu, R. (1991). A VLSI-efficient technique for generating multiple uncor
related noise sources and its application to stochastic neural networks. IEEE
Transactions on Circuits and Systems, 38:109-123.

[Alspector et al., 1993] Alspector, J., Meir, R., Yuhas, B., Jayakumar, A., and
Lippe, D. (1993). A parallel gradient descent method for learning in analog

810 D. Lippe, J. A/spector

VLSI neural networks. In Hanson, S. J., Cowan, J. D., and Giles, C. L., edi
tors, Advances in Neural Information Processing Systems 5, pages 836-844, San
Mateo, California. Morgan Kaufmann Publishers.

[Biggs, 1989] Biggs, N. L. (1989). Discrete Math. Oxford University Press.

[Brown et al., 1992] Brown, T. X., Tran, M. D., Duong, T., and Thakoor, A. P.
(1992). Cascaded VLSI neural network chips: Hardware learning for pattern
recognition and classification. Simulation, 58(5):340-347.

[Cauwenberghs, 1993] Cauwenberghs, G. (1993). A fast stochastic error-descent al
gorithm for supervised learning and optimization. In Hanson, S. J., Cowan, J. D.,
and Giles, C. L., editors, Advances in Neural Information Processing Systems 5,
pages 244-251, San Mateo, California. Morgan Kaufmann Publishers.

[Cauwenberghs, 1994] Cauwenberghs, G. (1994). Analog VLSI Autonomous Sys
tems for Learning and Optimization. PhD thesis, California Institute of Technol
ogy.

[Flower and Jabri, 1993J Flower, B. and Jabri, M. (1993). Summed weight neu
ron perturbation: An o(n) improvement over weight perturbation. In Hanson,
S. J., Cowan, J. D., and Giles, C. L., editors, Advances in Neural Information
Processing Systems 5, pages 212-219, San Mateo, California. Morgan Kaufmann
Publishers.

[Jabri and Flower, 1991] Jabri, M. and Flower, B. (1991). Weight perturbation:
An optimal architecture and learning technique for analog VLSI feedforward and
recurrent multilayer networks. In Neural Computation 3, pages 546-565.

[Kirk et al., 1993] Kirk, D., Kerns, D., Fleischer, K., and Barr, A. (1993). Analog
VLSI implementation of gradient descent. In Hanson, S. J., Cowan, J. D., and
Giles, C. L., editors, Advances in Neural Information Processing Systems 5, pages
789-796, San Mateo, California. Morgan Kaufmann Publishers.

[Kushner and Clark, 1978] Kushner, H. and Clark, D. (1978). Stochastic Approz
imation Methods for Constrained and Unconstrained Systems. Springer-Verlag,
New York.

[Lippe, 1994] Lippe, D. A. (1994). Parallel, perturbative gradient descent methods
for learning in analog VLSI neural networks. Master's thesis, Massachusetts
Institute of Technology.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986). Learning internal representations by error propogation. In Rumelhart,
D. E. and McClelland, J. L., editors, Parallel Distributed Processing: Ezplorations
in the Microstructure of Cognition, page 318. MIT Press, Cambridge, MA.

[Spall, 1992] Spall, J. C. (1992). Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation. IEEE Transactions on A u
tomatic Control, 37(3):332-341.

