
An Input Output HMM Architecture 

Yoshua Bengio* 
Dept. Informatique et Recherche 

Operationnelle 
Universite de Montreal, Qc H3C-3J7 

bengioyOIRO.UMontreal.CA 

Paolo Frasconi 
Dipartimento di Sistemi e Informatica 

Universita di Firenze (Italy) 
paoloOmcculloch.ing.unifi.it 

Abstract 

We introduce a recurrent architecture having a modular structure 
and we formulate a training procedure based on the EM algorithm. 
The resulting model has similarities to hidden Markov models, but 
supports recurrent networks processing style and allows to exploit 
the supervised learning paradigm while using maximum likelihood 
estimation. 

1 INTRODUCTION 
Learning problems involving sequentially structured data cannot be effectively dealt 
with static models such as feedforward networks. Recurrent networks allow to model 
complex dynamical systems and can store and retrieve contextual information in 
a flexible way. Up until the present time, research efforts of supervised learning 
for recurrent networks have almost exclusively focused on error minimization by 
gradient descent methods. Although effective for learning short term memories, 
practical difficulties have been reported in training recurrent neural networks to 
perform tasks in which the temporal contingencies present in the input/output 
sequences span long intervals (Bengio et al., 1994; Mozer, 1992). 

Previous work on alternative training algorithms (Bengio et al., 1994) could suggest 
that the root of the problem lies in the essentially discrete nature of the process 
of storing information for an indefinite amount of time. Thus, a potential solution 
is to propagate, backward in time, targets in a discrete state space rather than 
differential error information. Extending previous work (Bengio & Frasconi, 1994a), 
in this paper we propose a statistical approach to target propagation, based on the 
EM algorithm. We consider a parametric dynamical system with discrete states and 
we introduce a modular architecture, with subnetworks associated to discrete states. 
The architecture can be interpreted as a statistical model and can be trained by the 
EM or generalized EM (GEM) algorithms (Dempster et al., 1977), considering the 
internal state trajectories as missing data. In this way learning is decoupled into 
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a temporal credit assignment subproblem and a static learning subproblem that 
consists of fitting parameters to the next-state and output mappings defined by the 
estimated trajectories . In order to iteratively tune parameters with the EM or GEM 
algorithms, the system propagates forward and backward a discrete distribution over 
the n states, resulting in a procedure similar to the Baum-Welch algorithm used 
to train standard hidden Markov models (HMMs) (Levinson et al., 1983) . HMMs 
however adjust their parameters using unsupervised learning, whereas we use EM 
in a supervised fashion . Furthermore, the model presented here could be called 
Input/Output HMM, or IOHMM, because it can be used to learn to map input 
sequences to output sequences (unlike standard HMMs, which learn the output 
sequence distribution) . This model can also be seen as a recurrent version of the 
Mixture of Experts architecture (Jacobs et al. , 1991) , related to the model already 
proposed in (Cacciatore and Nowlan, 1994). Experiments on artificial tasks (Bengio 
& Frasconi , 1994a) have shown that EM recurrent learning can deal with long 
term dependencies more effectively than backpropa~ation through time and other 
alternative algorithms. However, the model used in (Bengio & Frasconi, 1994a) has 
very limited representational capabilities and can only map an input sequence to a 
final discrete state. In the present paper we describe an extended architecture that 
allows to fully exploit both input and output portions of the data, as required by 
the supervised learning paradigm. In this way, general sequence processing tasks, 
such as production, classification, or prediction, can be dealt with. 

2 THE PROPOSED ARCHITECTURE 
We consider a discrete state dynamical system based on the following state space 
description: x - f(x U ) 

t - t-l, t (1) 
Yt = 9(Xt, Ut) 

where Ut E R m is the input vector at time t, Yt E R r is the output vector, and 
Xt E {I , 2, .. . , n} is a discrete state. These equations define a generalized Mealy 
finite state machine, in which inputs and outputs may take on continuous values . In 
this paper , we consider a probabilistic version of these dynamics, where the current 
inputs and the current state distribution are used to estimate the state distribution 
and the output distribution for the next time step. Admissible state transitions will 
be specified by a directed graph 9 whose vertices correspond to the model 's states 
and the set of successors for state j is Sj . 

The system defined by equations (1) can be modeled by the recurrent architecture 
depicted in Figure l(a) . The architecture is composed by a set of state networks 
N j, j = 1 .. . n and a set of output networks OJ, j = 1 . .. n. Each one of the state 
and output networks is uniquely associated to one of the states ,and all networks 
share the same input Ut . Each state network M has the task of predicting the next 
state distribution , based on the current input and given that Xt-l = j . Similarly, 
each output network OJ predicts the output of the system, given the current state 
and input. All the subnetworks are assumed to be static and they are defined by 
means of smooth mappings Nj (Ut ; 9j ) and OJ (Ut; 1J j), where 9 j and 1J j are vectors 
of adjustable parameters (e .g., connection weights). The ranges of the functions 
Nj 0 may be constrained in order to account for the underlying transition graph 
9. Each output 'Pij ,t of the state subnetwork Nj (at time t) is associated to one 
of the successors i of state j . Thus the last layer of M has as many units as the 
cardinality of Sj. For convenience of notation, we suppose that 'Pij,t are defined for 
each i, j = 1, ... , n and we impose the condition 'Pij ,t = 0 for each i not belonging 
to S j . The softmax function is used in the last layer: 'Pij ,t = e a,j ,t ILlEsj eal j,t, j = 
1, ... , n , i E Sj where aij, t are intermediate variables that can be thought of as the 
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Figure 1: (a): The proposed IOHMM architecture. (b): Bottom: Bayesian network 
expressing conditional dependencies for an IOHMM; top: Bayesian network for a 
standard HMM 

activations of the output units of subnetwork N j . In this way L:7=1 'Pij ,t = 1 Tij,t. 
The vector 't E R n represents the internal state of the model and it is computed as 
a linear combination of the outputs of the state networks, gated by the previously 
computed internal state: n 

where IPj,t = ['PIj,t, ... , 'Pnj,t]'. 

output of the system 1Jt E R r : 

't = L(j,t-IIPj,t (2) 
j=1 

Output networks compete to predict the global 

n 

1Jt = L (jt1Jjt (3) 
j=1 

where 1Jjt E R r is the output of subnetwork OJ. At this level , we do not need 
to further specify the internal architecture of the state and output subnetworks. 
Depending on the task, the designer may decide whether to include hidden layers 
and what activation rule to use for the hidden units. 

This connectionist architecture can be also interpreted as a probability model. Let 
us assume a multinomial distribution for the state variable Xt and let us consider 't, the main variable of the temporal recurrence (2). If we initialize the vector '0 
to positive numbers summing to 1, it can be interpreted as a vector of initial state 
probabilities. In general, we obtain relation (it = P(Xt = i I un, having denoted 
with ui the subsequence of inputs from time 1 to t, inclusively. Equation (2) then 
has the following probabilistic interpretation: 

n 

P(Xt = i lui) = L P(Xt = i I Xt-I = j, ut}P(Xt-1 = j lui-I) (4) 
j=l 

i.e., the subnetworks N j compute transition probabilities conditioned on the input 
sequence Ut: P( . I .) (5) 'Pij,t = Xt = ~ Xt-l = ), Ut 

As in neural networks trained to minimize the output squared error, the output 
1Jt of this architecture can be interpreted as an expected "position parameter" 
for the probability distribution of the output Yt. However, in addition to being 
conditional on an input Ut, this expectation is also conditional on the state Xt, i.e. 
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7]t = E[Yt I Xt,Ut] . The actual form of the output density, denoted !Y(Yt ; 7]t), will 
be chosen according to the task . For example a multinomial distribution is suitable 
for sequence classification, or for symbolic mutually exclusive outputs. Instead, a 
Gaussian distribution is adequate for producing continuous outputs. In the first 
case we use a softmax function at the output of subnetworks OJ; in the second case 
we use linear output units for the subnetworks OJ. 

In order to reduce the amount of computation, we introduce an independency model 
among the variables involved in the probabilistic interpretation of the architecture. 
We shall use a Bayesian network to characterize the probabilistic dependencies 
among these variables. Specifically, we suppose that the directed acyclic graph 
9 depicted at the bottom of Figure 1 b is a Bayesian network for the dependency 
model associated to the variables u I , xI, YI. One of the most evident consequences 
of this independency model is that only the previous state and the current input are 
relevant to determine the next-state. This one-step memory property is analogue 
to the Markov assumption in hidden Markov models (HMM). In fact, the Bayesian 
network for HMMs can be obtained by simply removing the Ut nodes and arcs from 
them (see top of Figure Ib) . 

3 A SUPERVISED LEARNING ALGORITHM 
The learning algorithm for the proposed architecture is derived from the maximum 
likelihood principle. The training data are a set of P pairs of input/ output sequences 
(of length Tp): 1) = {(uip(p),Yip(p));p = 1 .. . P}. Let €J denote the vector of 
parameters obtained by collecting all the parameters (Jj and iJi of the architecture. 
The likelihood function is then given by 

p 

L(€J; 1)) = II p(Yip(p) I uip(p); €J). (6) 
p=l 

The output values (used here as targets) may also be specified intermittently. For 
example, in sequence classification tasks , one may only be interested in the out
put YT at the end of each sequence. The modification of the likelihood to account 
for intermittent targets is straightforward. According to the maximum likelihood 
principle, the optimal parameters are obtained by maximizing (6). In order to 
apply EM to our case we begin by noting that the state variables Xt are not ob
served. Knowledge of the model's state trajectories would allow one to decompose 
the temporal learning problem into 2n static learning subproblems. Indeed, if Xt 
were known, the probabilities (it would be either 0 or 1 and it would be possible 
to train each subnetwork separately, without taking into account any temporal de
pendency. This observation allows to link EM learning to the target propagation 
approach discussed in the introduction . Note that if we used a Viterbi-like approxi
mation (i .e., considering only the most likely path) , we would indeed have 2n static 
learning problems at each epoch. In order to we derive the learning equations, let 
us define the complete data as 1)c = {(uiP(p),yiP(p),xiP(p));p = 1 ... P}. The 
corresponding complete data l%-likelihood is 

""" T T T Ic(€J;1)c) = L...IOgP(YIP(P),ZlP(P) I u1P(p); €J). (7) 
p=l 

Since lc( €J; 1)c) depends on the hidden state variables it cannot be maximized di
rectly. The MLE optimization is then solved by introducing the auxiliary function 
Q(€J; 0) and iterating the following two,steps for k = 1, 2

r 
... :, 

Estimation: Compute Q(€J ; €J) = E[lc(€J; 1)c) 1), €J] 
Maximization: Update the parameters as 0 t- arg max€J Q( €J; 0) (8) 
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The expectation of (7) can be expressed as 
p Tp N N 

Q(0 ; 0) = L: L: L: (it!og P(Yt I Xt = i , Ut i 0) + L: hij,tlog<Pij ,t (9) 
p=1 t=1 i=1 j=1 

where hij ,t = EIZitzj,t-l I uf, yf; 0J, denoting Zit for an indicator variable = 1 if 
Xt = i and 0 otherwise. The hat in ( it and hij ,t means that these variables are 
computed using the "old" parameters 0 . In order to compute hij ,t we introduce 
the forward probabilities Qit = P(YL Xt = i ; uD and the backward probabilities 
f3it = p(yf I Xt = i , un, that are updated as follows: 

f3it = fY(Yt;l1it) Lt <Pti(Ut+df3l,t+l 

Qit = fY(Yt; l1it) Lt <pa(ut}Qt ,t-l . 
(10) 

h - f3it Qj ,t-l<Pij (ut) (11) 
ij ,t - " 

wi QiT 

Each iteration of the EM algorithm requires to maximize Q(0; 0). We first 
consider a simplified case, in which the inputs are quantized (i .e., belonging 
to a finite alphabet {0"1, "" O"K}) and the subnetworks behave like lookup ta
bles addressed by the input symbols O"t, i.e. we interpret each parameter as 
Wi'k = P(Xt = i I Xt-l = j , O"t = k). For simplicity, we restrict the analysis to clas
sification tasks and we suppose that targets are specified as desired final states for 
each sequence. Furthermore, no output subnetworks are used in this particular 
application of the algorithm. In this case we obtain the reestimation formulae: 

Wijk = . . " "p" {j,t(j,t-l 
w i ESj wp=1 wt :Ut=k , + T • 

"'T ' 

(12) 

In general, however, if the subnetworks have hidden sigmoidal units, or use a soft
max function to constrain their outputs to sum to one, the maximum of Q cannot 
be found analytically. In these cases we can resort to a GEM algorithm, that sim
ply produces an increase in Q, for example by gradient ascent. In this case, the 
derivatives of Q with respect to the parameters can be easily computed as follows. 
Let Ojlt be a generic weight in the state subnetwork N j . From equation (9): 

8Q(0;0) = L:L:L:hij,t_l_8<pij ,t 
80jk p t i <Pij,t 80jk 

(13) 

where the partial derivatives &:e~;t can be computed using backpropagation . Sim
ilarly, denoting with t'J ik a generic weight of the output subnetwork Oi, we have: 

8Q( 0; 0) '" '" '" . 8 87]a t 
8t'J · = L..JL..JL..J(i ,t~logfY(Yy;l1it) 8t'J .' 

,k p t t 7],t,t ,k 
(14) 

where ~;;:~t are also computed using backpropagation. Intuitively, the parameters 
are updated as if the estimation step of EM had provided targets for the outputs of 
the 2n subnetworks , for each time t . Although GEM algorithms are also guaranteed 
to find a local maximum of the likelihood, their convergence may be significantly 
slower compared to EM. In several experiments we noticed that convergence can be 
accelerated with stochastic gradient ascent . 
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4 COMPARISONS 
It appears natural to find similarities between the recurrent architecture described 
so far and standard HMMs (Levinson et al., 1983). The architecture proposed in this 
paper differs from standard HMMs in two respects: computing style and learning. 
With IOHMMs, sequences are processed similarly to recurrent networks, e.g., an 
input sequence can be synchronously transformed into an output sequence. This 
computing style is real-time and predictions of the outputs are available as the input 
sequence is being processed. This architecture thus allows one to implement all three 
fundamental sequence processing tasks: production, prediction, and classification. 
Finally, transition probabilities in standard HMMs are fixed, i.e . states form a 
homogeneous Markov chain. In IOHMMs, transition probabilities are conditional 
on the input and thus depend on time, resulting in an inhomogeneous Markov chain. 
Consequently, the dynamics of the system (specified by the transition probabilities) 
are not fixed but are adapted in time depending on the input sequence. 

The other fundamental difference is in the learning procedure. While interesting 
for their capabilities of modeling sequential phenomena, a major weakness of stan
dard HMMs is their poor discrimination power due to unsupervised learning. An 
approach that has been found useful to improve discrimination in HMMs is based 
on maximum mutual information (MMI) training. It has been pointed out that 
supervised learning and discriminant learning criteria like MMI are actually strictly 
related (Bridle, 1989). Although the parameter adjusting procedure we have defined 
is based on MLE, yf is used as desired output in response to the input uf , resulting 
in discriminant supervised learning. Finally, it is worth mentioning that a number 
of hybrid approaches have been proposed to integrate connectionist approaches into 
the HMM frame\'Vork. For example in (Bengio et al. , 1992) the observations used 
by the HMM are generated by a feedforward neural network. In (Bourlard and 
Wellekens, 1990) a feedforward network is used to estimate state probabilities, con
ditional to the acoustic sequence. A common feature of these algorithms and the 
one proposed in this paper is that neural networks are used to extract temporally 
local information whereas a Markovian system integrates long-term constraints. 

We can also establish a link between IOHMMs and adaptive mixtures of experts 
(ME) (Jacobs et al., 1991). Recently, Cacciatore & Nowlan (1994) have proposed a 
recurrent extension to the ME architecture, called mixture of controllers (MC), in 
which the gating network has feedback connections, thus allowing to take temporal 
context into account . Our IOHMM architecture can be interpreted as a special case 
of the MC architecture, in which the set of state subnetworks play the role of a 
gating network having a modular structure and second order connections. 

5 REGULAR GRAMMAR INFERENCE 
In this section we describe an application of our architecture to the problem of 
grammatical inference. In this task the learner is presented a set of labeled strings 
and is requested to infer a set of rules that define a formal language. It can be 
considered as a prototype for more complex language processing problems. However, 
even in the "simplest" case, i.e. regular grammars, the task can be proved to 
be NP-complete (Angluin and Smith, 1983) . We report experimental results on 
a set of regular grammars introduced by Tomita (1982) and afterwards used by 
other researchers to measure the accuracy of inference methods based on recurrent 
networks (Giles et al. , 1992; Pollack, 1991; Watrous and Kuhn , 1992) . 

We used a scalar output with supervision on the final output YT that was modeled 
as a Bernoulli variable fy (YT ; 7]T) = 7]~T (1 - 7] ) l-YT, with YT = 0 if the string 
is rejected and YT = 1 if it is accepted. In tbis application we did not apply 
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Table 1: Summary of experimental results on the seven Tomita's grammars. 

Grammar Sizes Convergence Accuracies 
n* FSA min Average Worst Best W&K Best 

1 2 2 .600 1.000 1.000 1.000 1.000 
2 8 3 .800 .965 .834 1.000 1.000 
3 7 5 .150 .867 .775 1.000 .783 
4 4 4 .100 1.000 1.000 1.000 .609 
5 4 4 .100 1.000 1.000 1.000 .668 
6 3 3 .350 1.000 1.000 1.000 .462 
7 3 5 .450 .856 .815 1.000 .557 

external inputs to the output networks . This corresponds to modeling a Moore 
finite state machine. Given the absence of prior knowledge about plausible state 
paths, we used an ergodic transition graph (i.e., fully connected).In the experiments 
we measured convergence and generalization performance using different sizes for 
the recurrent architecture. For each setting we ran 20 trials with different seeds 
for the initial weights. We considered a trial successful if the trained network was 
able to correctly label all the training strings. The model size was chosen using a 
cross-validation criterion based on performance on 20 randomly generated strings 
of length T ::; 12. For comparison, in Table 1 we also report for each grammar 
the number of states of the minimal recognizing FSA (Tomita, 1982). We tested 
the trained networks on a corpus of 213 - 1 binary strings of length T ::; 12. The 
final results are summarized in Table 1. The column "Convergence" reports the 
fraction of trials that succeeded to separate the training set. The next three columns 
report averages and order statistics (worst and best trial) of the fraction of correctly 
classified strings, measured on the successful trials. For each grammar these results 
refer to the model size n* selected by cross-validation. Generalization was always 
perfect on grammars 1,4,5 and 6. For each grammar, the best trial also attained 
perfect generalization. These results compare very favorably to those obtained with 
second-order networks trained by gradient descent, when using the learning sets 
proposed by Tomita. For comparison, in the last column of Table 1 we reproduce 
the results reported by Watrous & Kuhn (1992) in the best of five trials. In most 
of the successful trials the model learned an actual FSA behavior with transition 
probabilities asymptotically converging either to 0 or to 1. This renders trivial the 
extraction of the corresponding FSA . Indeed, for grammars 1,4,5, and 6, we found 
that the trained networks behave exactly like the minimal recognizing FSA. 

A potential training problem is the presence of local maxima in the likelihood func
tion. For example, the number of converged trials for grammars 3, 4, and 5 is quite 
small and the difficulty of discovering the optimal solution might become a serious 
restriction for tasks involving a large number of states. In other experiments (Ben
gio & Frasconi , 1994a) , we noticed that restricting the connectivity of the transition 
graph can significantly help to remove problems of convergence. Of course, this ap
proach can be effectively exploited only if some prior knowledge about the state 
space is available. For example, applications of HMMs to speech recognition always 
rely on structured topologies. 

6 CONCLUSIONS 
There are still a number of open questions . In particular, the effectiveness of the 
model on tasks involving large or very large state spaces needs to be carefully eval
uated. In (Bengio & Frasconi 1994b) we show that learning long term dependencies 
in these models becomes more difficult as we increase the connectivity of the state 
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transition graph. However, because transition probabilities of IOHMMs change at 
each t, they deal better with this problem of long-term dependencies than standard 
HMMs. Another interesting aspect to be investigated is the capability of the model 
to successfully perform tasks of sequence production or prediction. For example, 
interesting tasks that could also be approached are those related to time series 
modeling and motor control learning. 
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