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Abstract 

The auditory system of the barn owl contains several spatial maps . 
In young barn owls raised with optical prisms over their eyes, these 
auditory maps are shifted to stay in register with the visual map, 
suggesting that the visual input imposes a frame of reference on 
the auditory maps. However, the optic tectum, the first site of 
convergence of visual with auditory information, is not the site of 
plasticity for the shift of the auditory maps; the plasticity occurs 
instead in the inferior colliculus, which contains an auditory map 
and projects into the optic tectum. We explored a model of the owl 
remapping in which a global reinforcement signal whose delivery is 
controlled by visual foveation. A hebb learning rule gated by rein­
forcement learned to appropriately adjust auditory maps. In addi­
tion, reinforcement learning preferentially adjusted the weights in 
the inferior colliculus, as in the owl brain, even though the weights 
were allowed to change throughout the auditory system. This ob­
servation raises the possibility that the site of learning does not 
have to be genetically specified, but could be determined by how 
the learning procedure interacts with the network architecture . 
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Figure 1: Schematic view of the auditory pathways in the barn owl. 

1 Introduction 

The barn owl relies primarily on sounds to localize prey [6] with an accuracy vastly 
superior to that of humans. Figure 1A illustrates some of the nuclei involved in 
processing auditory signals. The barn owl determines the location of sound sources 
by comparing the time and amplitude differences of the sound wave between the 
two ears. These two cues are combined together for the first time in the shell and 
core of the inferior colliculus (ICc) which is shown at the bottom of the diagram. 
Cells in the ICc are frequency tuned and subject to spatial aliasing. This prevents 
them from unambiguously encoding the position of objects. The first unambiguous 
auditory map is found at the next stage, in the external capsule of the inferior 
colliculus (ICx) which itself projects to the optic tectum (OT). The OT is the 
first subforebrain structure which contains a multimodal spatial map in which cells 
typically have spatially congruent visual and auditory receptive fields. 

In addition, these subforebrain auditory pathways send one major collateral toward 
the forebrain via a thalamic relay. These collaterals originate in the ICc and are 
thought to convey the spatial location of objects to the forebrain [3]. Within the 
forebrain, two major structures have been involved in auditory processing: the 
archistriatum and field L. The archistriatum sends a projection to both the inferior 
colliculus and the optic tectum. 

Knudsen and Knudsen (1985) have shown that these auditory maps can adapt to 
systematic changes in the sensory input. Furthermore, the adaptation appears to 
be under the control of visual input, which imposes a frame of reference on the 
incoming auditory signals. In owls raised with optical prisms, which introduce a 
systematic shift in part of the visual field, the visual map in the optic tectum was 
identical to that found in control animals, but the auditory map in the ICx was 
shifted by the amount of visual shift introduced by the prisms. This plasticity 
ensures that the visual and auditory maps stay in spatial register during growth 
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and other perturbations to sensory mismatch. 

Since vision instructs audition, one might expect the auditory map to shift in the 
optic tectum, the first site of visual-auditory convergence. Surprisingly, Brainard 
and Knudsen (1993b) observed that the synaptic changes took place between the 
ICc and the ICx, one synapse before the site of convergence. 

These observations raise two important questions: First, how does the animal knows 
how to adapt the weights in the ICx in the absence of a visual teaching signal? 
Second, why does the change take place at this particular location and not in the 
aT where a teaching signal would be readily available? 

In a previous model [7], this shift was simulated using backpropagation to broadcast 
the error back through the layers and by constraining the weights changes to the 
projection from the ICc to ICx. There is, however, no evidence for a feedback 
projection between from the aT to the ICx that could transmit the error signal; 
nor is there evidence to exclude plasticity at other synapses in these pathways. 

In this paper, we suggest an alternative approach in which vision guides the remap­
ping of auditory maps by controlling the delivery of a scalar reinforcement signal. 
This learning proceeds by generating random actions and increasing the probability 
of actions that are consistently reinforced [1, 5] . In addition, we show that rein­
forcement learning correctly predicts the site of learning in the barn owl, namely 
at the ICx-ICc synapse, whereas backpropagation [8] does not favor this location 
when plasticity is allowed at every synapse. This raises a general issue: the site of 
synaptic adjustment might be imposed by the combination of the architecture and 
learning rule, without having to restrict plasticity to a particular synapse. 

2 Methods 

2.1 Network Architecture 

The network architecture of the model based on the barn owl auditory system, 
shown in figure 2A, contains two parallel pathways. The input layer was an 8x21 
map corresponding to the ICc in which units responded to frequency and interaural 
phase differences. These responses were pooled together to create auditory spatial 
maps at subsequent stages in both pathways. The rest of the network contained a 
series of similar auditory maps, which were connected topographically by receptive 
fields 13 units wide. We did not distinguish between field L and the archistriatum 
in the forebrain pathways and simply used two auditory maps, both called FBr. 

We used multiplicative (sigma-pi) units in the aT whose activities were determined 
according to: 

Yi = L,. w~Br yfBr WfkBr yfc:c (1) 
j 

The multiplicative interaction between ICx and FBr activities was an important 
assumption of our model. It forced the ICx and FBr to agree on a particular 
position before the aT was activated. As a result, if the ICx-aT synapses were 
modified during learning, the ICx-FBr synapses had to be changed accordingly. 
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Figure 2: Schematic diagram of weights (white blocks) in the barn owl auditory 
system. A) Diagram of the initial weights in the network. B) Pattern of weights 
after training with reinforcement learning on a prism-induced shift offour units. The 
remapping took place within the ICx and FBr. C) Pattern of weights after training 
with backpropagation. This time the ICx-OT and FBr-OT weights changed. 

Weights were clipped between 5.0 and 0.01, except for the FBr-ICx connections 
whose values were allowed to vary between 8.0 and 0.01. The minimum values were 
set to 0.01 instead of zero to prevent getting trapped in unstable local minima which 
are often associated with weights values of zero. The strong coupling between FBr 
and ICx was another important assumption of the model whose consequence will 
be discussed in the last section. 

Examples were generated by simply activating one unit in the ICc while keeping the 
others to zero, thereby simulating the pattern of activity that would be triggered by 
a single localized auditory stimulus. In all simulations, we modeled a prism-induced 
shift of four units. 

2.2 Reinforcement learning 

We used stochastic units and trained the network using reinforcement learning [1]. 
The weighted sum of the inputs, neti, passed through a sigmoid, f(x) , is interpreted 
as the probability, Pi, that the unit will be active: 

Pi = f(neti) * 0.99 + 0.01 (2) 

were the output of the unit Yi was: 

. _ {a with probability 1 - Pi 
y, - 1 with probability Pi (3) 
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Because of the form of the equation for Pi, all units in the network had a small 
probability (0.01) of being spontaneously active in the absence of any inputs. This 
is what allowed the network to perform a stochastic search in action space to find 
which actions were consistently associated with positive reinforcement. 

We ensured that at most one unit was active per trial by using a winner-take-all 
competition in each layer . 

Adjustable weights in the network were updated after each training examples with 
hebb-like rule gated by reinforcement: 

(4) 

A trial consisted in choosing a random target location for auditory input (ICc) and 
the output of the OT was used to generate a head movement . The reinforcement , 
r , was then set to 1 for head movements resulting in the foveation of the stimulus 
and to -0.05 otherwise. 

2.3 Backpropagation 

For the backpropagation network , we used deterministic units with sigmoid activa­
tion functions in which the output of a unit was given by: 

(5) 

where neti is the weighted sum of the inputs as before. 

The chain rule was used to compute the partial derivatives of the squared error, 
E , with respect to each weights and the weights were updated after each training 
example according to: 

(6) 

The target vectors were similar to the input vectors, namely only one OT units was 
required to be activated for a given pattern, but at a position displaced by 4 units 
compared to the input . 

3 Results 

3.1 Learning site with reinforcement 

In a first set of simulation we kept the ICc-ICx and ICc-FBr weights fixed. Plasticity 
was allowed at these site in later simulations. 

Figure 2A shows the initial set of weights before learning starts. The central diago­
nal lines in the weight diagrams illustrate the fact that each unit receives only one 
non-zero weight from the unit in the layer below at the same location. 
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There are two solutions to the remapping: either the weights change within the 
ICx and FBr, or from the ICx and the FBr to the ~T. As shown in figure 2B , 
reinforcement learning converged to the first solution. In contrast, the weights 
between the other layers were unaltered, even though they were allowed to change. 

To prove that the network could have actually learned the second solution, we 
trained a network in which the ICc-ICx weights were kept fixed . As we expected, 
the network shifted its maps simultaneously in both sets of weights converging onto 
the OT, and the resulting weights were similar to the ones illustrated in figure 2C. 
However, to reach this solution, three times as many training examples were needed. 

The reason why learning in the ICx and FBr were favored can be attributed to 
probabilistic nature of reinforcement learning. If the probability of finding one 
solution is p, the probability of finding it twice independently is p2. Learning in the 
ICx and FBR is not independent because of the strong connection from the FBr to 
the ICx. When the remapping is learned in the FBR this connection automatically 
remapped the activities in the ICx which in turn allows the ICx-ICx weights to 
remap appropriately. In the OT on the other hand, the multiplicative connection 
between the ICx and FBr weights prevent a cooperation between this two sets of 
weights. Consequently, they have to change independently, a process which took 
much more training. 

3.2 Learning at the ICc-ICx and ICc-FBr synapses 

The aliasing and sharp frequency tuning in the response of ICc neurons greatly 
slows down learning at the ICc-ICx and ICc-FBr synapses. We found that when 
these synapses were free to change, the remapping still took place within the ICx 
or FBr (figure 3). 

3.3 Learning site with backpropagation 

In contrast to reinforcement learning, backpropagation adjusted the weights in two 
locations: between the ICx and the OT and between the Fbr and OT (figure 2C). 
This is the consequence of the tendency of the backpropagation algorithm to first 
change the weights closest to where the error is injected. 

3.4 Temporal evolution of weights 

Whether we used reinforcement or supervised learning, the map shifted in a very 
similar way. There was a simultaneous decrease of the original set of weights with a 
simultaneous increase of the new weights, such that both sets of weights coexisted 
half way through learning. This indicates that the map shifted directly from the 
original setting to the new configuration without going through intermediate shifts. 

This temporal evolution of the weights is consistent the findings of Brainard and 
Knudsen (1993a) who found that during the intermediate phase of the remapping, 
cells in the inferior colli cuI us typically have two receptive fields. More recent work 
however indicates that for some cells the remapping is more continuous(Brainard 
and Knudsen , personal communication) , a behavior that was not reproduced by 
either of the learning rule. 
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Figure 3: Even when the ICc-ICx weights are free to change, the network update 
the weights in the ICx first. A separate weight matrix is shown for each isofrequency 
map from the ICc to ICx. The final weight matrices were predominantly diagonal; 
in contrast, the weight matrix in ICx was shifted. 

4 Discussion 

Our simulations suggest a biologically plausible mechanism by which vision can 
guide the remapping of auditory spatial maps in the owl's brain. Unlike previous 
approaches, which relied on visual signals as an explicit teacher in the optic tec­
tum [7], our model uses a global reinforcement signal whose delivery is controlled by 
the foveal representation of the visual system. Other global reinforcement signals 
would work as well. For example, a part of the forebrain might compare auditory 
and visual patterns and report spatial mismatch between the two. This signal could 
be easily incorporated in our network and would also remap the auditory map in 
the inferior colli cuI us. 

Our model demonstrates that the site of synaptic plasticity can be constrained 
by the interaction between reinforcement learning and the network architecture. 
Reinforcement learning converged to the most probably solution through stochastic 
search. In the network, the strong lateral coupling between ICx and FBr and the 
multiplicative interaction in the OT favored a solution in which the remapping took 
place simultaneously in the ICx and FBr. A similar mechanism may be at work 
in the barn owl's brain. Colaterals from FBr to ICx are known to exist, but the 
multiplicative interaction has not been reported in the barn owl optic tectum. 

Learning mechanisms may also limit synaptic plasticity. NMDA receptors have been 
reported in the ICx, but they might not be expressed at other synapses. There may, 
however, be other mechanisms for plasticity. 

The site of remapping in our model was somewhat different from the existing ob­
servations. We found that the change took place within the ICx whereas Brainard 
and Knudsen [3] report that it is between the ICc and the ICx. A close examination 
of their data (figure 11 in [3]) reveals that cells at the bottom of ICx were not 
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remapped, as predicted by our model, but at the same time, there is little anatom­
ical or physiological evidence for a functional and hierarchical organization within 
the ICx. Additional recordings are need to resolve this issue. We conclude that 
for the barn owl's brain, as well as for our model, synaptic plasticity within ICx 
was favored over changes between ICc and ICx. This supports the hypothesis that 
reinforcement learning is used for remapping in the barn owl auditory system. 
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Abstract 

This paper discusses the use of artificial neural networks for dynamic 
modelling of time series. We argue that multistep prediction is more 
appropriate to capture the dynamics of the underlying dynamical system, 
because it constrains the iterated model. We show how this method can be 
implemented by a recurrent ANN trained with trajectory learning. We also 
show how to select the trajectory length to train the iterated predictor for the 
case of chaotic time series. Experimental results corroborate the proposed 
method. 

1.0 Introduction 
The search for a model of an experimental time series has been an important problem 
in science. For a long time the linear model was almost exclusively used to describe 
the system that produced the time series [1], but recently nonlinear models have also 
been proposed to replace the linear ones [2]. Lapedes and Farber [3] showed how 
artificial neural networks (ANNs) can be used to identify the dynamics of the 
unknown system that produced the time series. He simply used a multilayer 
perceptron to predict the next point in state space, and trained this topology with 
backpropagation. This paper explores more complex neural topologies and training 
methods with the goal of improving the quality of the identification of the dynamical 
system, and to understand better the issues of dynamic modelling with neural 
networks which are far from being totally understood. 

According to Takens' embedding theorem, a map F: Jilm + 1 ~ Jilm + 1 exists that 
transforms the current reconstructed state y (t) to the next state y (t + 1) , i.e. 

y(t+ 1) = F(y(t» (1) 
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or 

where m is the estimated dimension of the unknown dynamical system cI>. Note that 
the map contains several trivial (nonlinear) filters and a predictor. The predictive 

mapping r: Jilm + 1 ~ R can be expressed as 

x(t+ 1) = r(x(t» (2) 

where x (t) = [x (t - 2m) ... x (t - 1) x (t)] T. This is actually the estimated nonlinear 
autoregressive model of the input time series. The existence of this predictive model 
lays a theoretical basis for dynamic modelling in the sense that we can build from a 

vector time series a model to approximate the mapping r. If the conditions of 
Takens embedding theorem are met, this mapping captures some of the properties of 
the unknown dynamical system cI> that produced the time series [7]. 

Presently one still does not have a capable theory to guarantee if the predictor has 
successfully identified the original model cI>. The simple point by point comparison 
between the original and predicted time series used as goodness of fit for non-chaotic 
time series breaks down for chaotic ones [5]. Two chaotic time series can be very 
different pointwise but be produced by the same dynamical system (two trajectories 
around the same attractor). The dynamic invariants (correlation dimension, Lyapunov 
exponents) measure global properties of the attractor, so they should be used as the 
rule to decide about the success of dynamic modelling. Hence, a pragmatic approach 
in dynamic modelling is to seed the predictor with a point in state space, feed the 
output to its input as an autonomous system, and create a new time series. If the 
dynamic invariants computed from this time series match the ones from the original 
time series, then we say that dynamic modelling was successful [5]. The long term 
behavior of the autonomous predictive model seems to be the key factor to find out if 
the predictor identified the original model. This is the distinguishing factor between 
prediction of chaotic time series and dynamic modelling. The former only addresses 
the instantaneous prediction error, while the latter is interested in long term behavior. 

In order to use this theory, one needs to address the choices of predictor 
implementation. Due to the universal mapping characteristics of multilayer 
perceptrons (MLPs) and the existence of well established learning rules to adapt the 
MLP coefficients, this type of network appears as an appropriate choice [3]. However, 
one must realize that the MLP is a static mapper, and in dynamic modelling we are 
dealing with time varying signals, where the past of the signal contains vital 
information to describe the mapping. The design considerations to select the neural 
network topology are presented elsewhere [4]. Wejust would like to say that the MLP 
has to be enhanced with short term memory mechanisms, and that the estimation of 
the correlation dimension should be used to set the size of the memory layer. The 
main goal of the paper is to establish the methodology to efficiently train neural 
networks for dynamic modelling. 
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2. Iterated versus Single Step Prediction. 
From eqn. 2 it seems that the resulting dynamic model F can be obtained through 
single step prediction. This has been the conventional way to handle dynamic 
modelling [2],[3]. The predictor is adapted by minimizing the error 

L _.1 
E = L dist (x (i + 1) -F (1 (i» ) (3) 

I = 2m + 1 

_.1 
where L is the length of the time series, x(i) is the itb data sample, F is the map 
developed by the predictor and dist() is a distance measure (normally the L2 norm). 
Notice that the training to obtain the mapping is done independently from sample to 
sample, i.e. 

_.1 
x(i+ 1) = F (xU» +51 

_.1 
x (i + j) = F (1 (i + j -1» + 5j 

where 5j are the instantaneous prediction errors, which are minimized during 
training. Notice that the predictor is being optimized under the assumption that the 
previous point in state space is known without error. 

The problem with this approach can be observed when we iterate the predictor as an 
autonomous system to generate the time series samples. If one wants to produce two 
samples in the future from sample i the predicted sample i+ 1 needs to be utilized to 
generate sample i+2. The predictor was not optimized to do this job, because during 
training the true i+ 1 sample was assumed known. As long as 51 is nonzero (as will be 
always the case for nontrivial problems), errors will accumulate rapidly. Single step 
prediction is more associated with extrapolation than with dynamic modelling, which 
requires the identification of the unique mapping that produces the time series. 

When the autonomous system generates samples, past values are used as inputs to 
generate the following samples, which means that the training should constrain also 
the iterates of the predictive mapping. Putting it in a simple way, we should train the 
predictor in the same way we are going to use it for testing (Le. as an autonomous 
system). 

We propose multistep prediction (or trajectory learning) as the way to constrain the 
iterates of the mapping developed by the predictor. Let us define 

" E = L dist(x(i + I)-xU + 1» (4) 

I = 2m + 1 

where k is the number of prediction steps (length ofthe trajectory) and x (i + 1) is an 
estimate of the predictive map 

_.1 
x(i+l) = F (i(i-2m), ... ,i(i» (5) 
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with 

[
X (i) 0 SiS 2m 

j (i) = _.1. 

F (x(i-2m-l), ... ,x(i-l» i>2m 

Equation (5) states that i (i) is the i-2m iterate of the predictive part of the map 
(for i>2m), i.e. 

i(i+l) 
_ .1. -.1. - .1. _.1. t - 2m 

= (F (F ( ... F (x(2m»») = (F (x(2m») (6) 

Hence, minimizing the criterion expressed by equation (4) an optimal multistep 
predictor is obtained. The number of constraints that are imposed during learning is 
associated with k, the number of prediction steps, which corresponds to the number 
of iterations of the map. The more iterations, the less likely a sub-optimal solution is 
found, but note that the training time is being proportionally increased. In a chaotic 
time series there is a more important consideration that must be brought into the 
picture, the divergence of nearby trajectories, as we are going to see in a following 
section. 

3. Multistep prediction with neural networks 
Figure 1 shows the topology proposed in [4] to identify the nonlinear mapping. 
Notice that the proposed topology is a recurrent neural network. with a global 
feedback loop. This topology was selected to allow the training of the predictor in the 
same way as it will be used in testing, i.e. using the previous network outputs to 
predict the next point. This recurrent architecture should be trained with a mechanism 
that will constrain the iterates of the map as was discussed above. Single step 
prediction does not fit this requirement. 

With multistep prediction, the model system can be trained in the same way as it is 
used in testing. We seed the dynamic net with a set of input samples, disconnect the 
input and feed back the predicted sample to the input for k steps. The mean square 
error between the predicted and true sample at each step is used as the cost function 
(equation (4». If the network topology was feed forward , batch learning could be used 
to train the network, and static backpropagation applied to train the net. However, as 
a recurrent topology is utilized, a learning paradigm such as backpropagation through 
time (BPTT) or real time recurrent learning (RTRL) must be utilized [6]. The use of 
these training methods should not come as a surprise since we are in fact fitting a 
trajectory over time, so the gradients are time varying. This learning method is 
sometimes called "trajectory learning" in the recurrent learning literature [6]. A 
criterion to select the length of the trajectory k will be presented below. 

The procedure described above must be repeated for several different segments of the 
time series. For each new training segment, 2m+ 1 samples of the original time series 
are used to seed the predictor. To ease the training we suggest that successive training 
sequences of length k overlap by q samples (q<k). For chaotic time series we also 
suggest that the error be weighted according to the largest Lyapunov exponent. Hence 
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the cost function becomes 
r " 

E = L L h(i) ·dist(x(i+jq+l)-i(i+jq+l» (7) 
J = 01 = 2m+ I 

where r is the number of training sequences, and 
~ A I -(i-2m-I) 

h (i) = (e III/IX ) 
(8) 

In this equation A.max is the largest Lyapunov exponent and L\t the sampling interval. 
With this weighting the errors for later iteration are given less credit, as they should 
since due to the divergence of trajectories a small error is magnified proportionally 
to the largest Lyapunov exponent [7]. 

4. Finding the length of the trajectory 
From the point of view of dynamic modelling, each training sequences should 
preferably contain enough information to model the attractor. This means that each 
sequence should be no shorter than the orbital length around the attractor. We 
proposed to estimate the orbital length as the reciprocal of the median frequency of 
the spectrum of the time series [8]. Basically this quantity is the average time 
required for a point to return to the same neighborhood in the attractor. 

The length of the trajectory is also equivalent to the number of constraints we impose 
on the iterative map describing the dynamical model. However, in a chaotic time 
series there is another fundamental limitation imposed on the trajectory length - the 
natural divergence of trajectories which is controlled by A.max' the largest Lyapunov 
exponent. If the trajectory length is too long, then instabilities in the training can be 
expected. A full discussion of this topic is beyond the scope of this paper, and is 
presented elsewhere [8]. We just want to say that when A.max is positive there is an 
uncertainty region around each predicted point that is a function of the number of 
prediction steps (due to cummulative error). If the trajectory length is too long the 
uncertainty regions from two neighboring trajectories will overlap, creating 
conflicting requirements for training (the model is requried to develop a map to 
follow both segments A and B- Figure 2). 

It turns out that one can approximately find the number of iterations is that will 
guarantee no overlap of uncertainty regions [8]. The length of the principal axis of 
the uncertainty region around a signal trajectory at iteration i can be estimated as 

£; = toe 
~III/lXiAI (9) 

where £0 is the initial separation. Now assuming that the two principal axis of nearby 
trajectories are colinear, we should choose the number of iterations is such that the 
distance dj between trajectories is larger than the uncertainty region, i.e. d; ~ 2£; . 

I I 

The estimate of is should be averaged over a number of neighboring training 
sequences (-50 depending on the signal dynamics). 

Hence, to apply this method three quantities must be estimated: the largest Lyapunov 
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exponent, using one of the accepted algorithms. The initial separation can be 
estimated from the one-step predictor. And is by averaging local divergence. The 
computation time required to estimate these quantities is usually much less than 
setting by trial and error the length of the trajectory until a reasonable learning curve 
is achieved. 

We also developed a method to train predictors for chaotic signals with large A.max' 

but it will not be covered in this paper [8]. 

5. Results 
We used this methodology to model the Mackey-Glass system (d=30, sampled at 116 
Hz). A signal of 500 samples was obtained by 4th order Runge-Kutta integration and 
normalized between -1,1. The largest Lyapunov exponent for this signal is 0.0071 
nats/sec. We selected a time delay neural network (TDNN) with topology 8-14-1. The 
output unit is linear, and the hidden layer has sigmoid nonlinearities. The number of 
taps in the delay line is 8. 

We trained a one-step predictor and the multistep predictor with the methodology 
developed in this paper to compare results. The single step predictor was trained with 
static backpropagation with no momentum and step size of 0.001. Trained was 
stopped after 500 iterations. The final MSE was 0.000288. After training, the 
predictor was seeded with the first 8 points of the time series and iterated for 3,000 
times. Figure 3a shows the corresponding output. Notice that the waveform produced 
by the model is much more regular that the Mackey-Glass signal, showing that some 
fine detail of the attractor has not been captured. 

Next we trained the same TDNN with a global feedback loop (TDNNGF). The 
estimate of the is over the neighboring orbits provided an estimate of 14, and it is 
taken as the length of the trajectory. We displaced each training sequence by 3 
samples (q=3 in eqn 7). BPTT was used to train the TDNNGF for 500 iterations over 
the same signal. The final MSE was 0.000648, higher than for the TDNN case. We 
could think that the resulting predictor was worse. The TDNNGF predictor was 
initialized with the same 8 samples of the time series and iterated for 3,000 times. 
Figure 3b shows the resulting waveform. It "looks" much closer to the original 
Mackey-Glass time series. We computed the average prediction error as a function of 
iteration for both predictors and also the theoretical rate of divergence of trajectories 
assuming an initial error EO (Casdagli conjecture, which is the square of eqn 9) [7]. 
As can be seen in Figure 4 the TDNNGF is much closer to the theoretical limit, which 
means a much better model. We also computed the correlation dimension and the 
Lyapunov exponent estimated from the generated time series, and the figures 
obtained from TDNNGF are closer to the original time series. 

Figure 5 shows the instability present in the training when the trajectory length is 
above the estimated value of 14. For this case the trajectory length is 20. As can be 
seen the MSE decreases but then fluctuates showing instability in the training. 

6. Conclusions 
This paper addresses dynamic modelling with artificial neural networks. We showed 
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that the network topology should be recurrent such that the iterative map is 
constrained during learning. This is a necessity since dynamic modelling seeks to 
capture the long term behavior of the dynamical system. These models can also be 
used as a sample by sample predictors. Since the network topology is recurrent, 
backpropagation through time or real time recurrent learning should be used in 
training. In this paper we showed how to select the length of the trajectory to avoid 
instability during training. 

A lot more work needs to be done to reliably capture dynamical properties of time 
series and encapsulate them in artificial models. But we believe that the careful 
analysis of the dynamic characteristics and the study of its impact on the predictive 
model performance is much more promising than guess work. According to this (and 
others) studies, modelling of chaotic time series of low Amax seems a reality. We have 
extended some of this work for time series with larger Amax, and successfully 
captured the dynamics of the Lorenz system [8]. But there, the parameters for 
learning have to be much more carefully selected, and some of the choices are still 
arbitrary. The main issue is that the trajectories diverge so rapidly that predictors have 
a hard time to capture information regarding the global system dynamics. It is 
interesting to study the limit of predictability of this type of approach for high 
dimensional and high Amax chaos. 

Predictor Corr. Dim. Lyapunov 

MG30 2.70+/-0.05 0.0073+/-0.000 1 

TDNNGF 2.65+/-0.03 0.0074+/-0.0001 

TDNN 1.60+1-0.10 0.0063+/-0.0001 

segment B 

Figure 1. Prop_osed recurrent architecture Figure 2. State space representation in 
(IDNNGF) training a model 
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