
Learning Many Related Tasks at the
Same Time With Backpropagation

Rich Caruana
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
caruana@cs.cmu.edu

Abstract

Hinton [6] proposed that generalization in artificial neural nets
should improve if nets learn to represent the domain's underlying
regularities . Abu-Mustafa's hints work [1] shows that the outputs
of a backprop net can be used as inputs through which domain
specific information can be given to the net . We extend these ideas
by showing that a backprop net learning many related tasks at the
same time can use these tasks as inductive bias for each other and
thus learn better . We identify five mechanisms by which multitask
backprop improves generalization and give empirical evidence that
multi task backprop generalizes better in real domains.

1 INTRODUCTION

You and I rarely learn things one at a time, yet we often ask our programs to-it
must be easier to learn things one at a time than to learn many things at once.
Maybe not. The things you and I learn are related in many ways . They are
processed by the same sensory apparatus, controlled by the same physical laws,
derived from the same culture, ... Perhaps it is the similarity between the things
we learn that helps us learn so well. What happens when a net learns many related
functions at the same time? Will the extra information in the teaching signal of the
related tasks help it learn better?

Section 2 describes five mechanisms that improve generalization in backprop nets
trained simultaneously on related tasks. Section 3 presents empirical results from
a road-following domain and an object-recognition domain where backprop with
multiple tasks improves generalization 10-40%. Section 4 briefly discusses when
and how to use multitask backprop. Section 5 cites related work and Section 6
outlines directions for future work.

658 Rich Caruana

2 MECHANISMS OF MULTITASK BACKPROP

We identified five mechanisms that improve generalization in backprop nets trained
simultaneously on multiple related tasks. The mechanisms all derive from the sum
ming of error gradient terms at the hidden layer from the different tasks. Each
exploits a different relationship between the tasks.

2.1 Data Amplification

Data amplification is an effective increase in sample size due to extra information
in the training signal of related tasks. There are two types of data amplification.

2.1.1 Statistical Data Amplification

Statistical amplification, occurs when there is noise in the training signals. Consider
two tasks, T and T', with independent noise added to their training signals, that
both benefit from computing a feature F of the inputs. A net learning both T and
T' can, if it recognizes that the two tasks share F, use the two training signals to
learn F better by averaging F through the noise. The simplest case is when T = T',
i.e., when the two outputs are independently corrupted versions of the same signal.

2.1.2 Blocking Data Amplification

The 2nd form of data amplification occurs even if there is no noise. Consider two
tasks, T and T', that use a common feature F computable from the inputs, but
each uses F for different training patterns. A simple example is T = A OR F
and T' = NOT(A) OR F. T uses F when A = 0 and provides no information
about F when A = 1. Conversely, T' provides information about F only when
A = 1. A net learning just T gets information about F only on training patterns
for which A = 0, but is blocked when A = 1. But a net learning both T and T'
at the same time gets information about F on every training pattern; it is never
blocked. It does not see more training patterns, it gets more information for each
pattern. If the net learning both tasks recognizes the tasks share F, it will see a
larger sample of F. Experiments with blocked functions like T and T' (where F is
a hard but learnable function of the inputs such as parity) indicate backprop does
learn common subfeatures better due to the larger effective sample size.

2.2 Attribute Selection

Consider two tasks, T and T', that use a common subfeature F. Suppose there
are many inputs to the net, but F is a function of only a few of the inputs. A
net learning T will,_ if there is limited training data and/or significant noise, have
difficulty distinguishing inputs relevant to F from those irrelevant to it. A net
learning both T and T', however, will better select the attributes relevant to F
because data amplification provides better training signals for F and that allows it
to better determine which inputs to use to compute F. (Note: data amplification
occurs even when there is no attribute selection problem. Attribute selection is a
consequence of data amplification that makes data amplification work better when
a selection problem exists.) We detect attribute selection by looking for connections
to relevant inputs that grow stronger compared to connections for irrelevant inputs
when multiple tasks are trained on the net.

Learning Many Related Tasks at the Same Time with Backpropagation 659

2.3 Eavesdropping

Consider a feature F, useful to tasks, T and T', that is easy to learn when learning
T, but difficult to learn when learning T' because T' uses F in a more complex
way. A net learning T will learn F, but a net learning just T' may not. If the
net learning T' also learns T, T' can eavesdrop on the hidden layer learned for T
(e.g., F) and thus learn better. Moreover, once the connection is made between
T' and the evolving representation for F, the extra information from T' about F
will help the net learn F better via the other mechanisms. The simplest case of
eavesdropping is when T = F. Abu-Mostafa calls these catalytic hints[l]. In this
case the net is being told explicitly to learn a feature F that is useful to the main
task. Eavesdropping sometimes causes non-monotonic generalization curves for the
tasks that eavesdrop on other tasks. This happens when the eavesdropper begins
to overtrain, but then finds something useful learned by another task, and begins
to perform better as it starts using this new information.

2.4 Representation Bias

Because nets are initialized with random weights, backprop is a stochastic search
procedure; multiple runs rarely yield identical nets. Consider the set of all nets (for
fixed architecture) learnable by backprop for task T. Some of these generalize better
than others because they better "represent" the domain's regularities. Consider one
such regularity, F, learned differently by the different nets. Now consider the set
of all nets learnable by backprop for another task T' that also learns regularity F.
If T and T' are both trained on one net and the net recognizes the tasks share F,
search will be biased towards representations of F near the intersection of what
would be learned for T or T' alone. We conjecture that representations of F near
this intersection often better capture the true regularity of F because they satisfy
more than one task from the domain.

Representations of F Findable by Backprop

A form of representation bias that is easier to experiment with occurs when the
representations for F sampled by the two tasks are different minima. Suppose
there are two minima, A and B, a net can find for task T. Suppose a net learning
task T' also has two minima, A and C. Both share the minima at A (i.e., both would
perform well if the net entered that region of weight space), but do not overlap at
Band C. We ran two experiments. In the first, we selected the minima so that
nets trained on T alone are equally likely to find A or B, and nets trained on T'
alone are equally likely to find A or C. Nets trained on both T and T' usually fall
into A for both tasks. 1 Tasks prefer hidden layer representations that other tasks
prefer.

In the second experiment we selected the minima so that T has a strong preference

lIn these experiments the nets have sufficient capacity to find independent minima for
the tasks. They are not forced to share the hidden layer representations. But because
the initial weights are random, they do initially share the hidden layer and will separate
the tasks (i.e., use independent chunks of the hidden layer for each task) only if learning
causes them to.

660 Rich Caruana

for B over A: a net trained on T always falls into B. T', however, still has no
preference between A or C. When both T and T' are trained on one net, T falls
into B as expected: the bias from T' is unable to pull it to A. Surprisingly, T'
usually falls into C, the minima it does not share with T! T creates a "tide" in the
hidden layer representation towards B that flows away from A. T' has no preference
for A or C, but is subject to the tide created by T. Thus T' usually falls into C; it
would have to fight the tide from T to fall into A. Tasks prefer NOT to use hidden
layer representations that other tasks prefer NOT to use.

2.5 How the Mechanisms are Related

The "tide" mentioned while discussing representation bias results from the aggre
gation of error gradients from multiple tasks at the hidden layer. It is what makes
the five mechanisms tick. It biases the search trajectory towards better performing
regions of weight space. Because the mechanisms arise from the same underlying
cause, it easy for them to act in concert. Their combined effect can be substantial.

Although the mechanisms all derive from gradient summing, they are not the same.
Each emphasizes a different relationship between tasks and has different effects on
what is learned. Changes in architecture, representation, and the learning procedure
affect the mechanisms in different ways. One particularly noteworthy difference
between the mechanisms is that if there are minima, representation bias affects
learning even with infinite sample size. The other mechanisms work only with finite
sample size: data amplification (and thus attribute selection) and eavesdropping
are beneficial only when the sample size is too small for the training signal for one
task to provide enough information to the net for it to learn good models.

3 EMPIRICAL RESULTS

Experiments on carefully crafted test problems verify that each of the mechanisms
can work. 2 These experiments, however, do not indicate how effective multitask
backprop is on real problems: tweaking the test problems alters the size of the
effects. Rather than present results for contrived problems, we present a more con
vincing demonstration of multi task backprop by testing it on two realistic domains.

3.1 1D-ALVINN

ID-ALVINN uses a road image simulator developed by Pomerleau. It was modified
to generate I-D road images comprised of a single 32-pixel horizontal scan line
instead of the original 2-D 30x32-pixel image. This was done to speed learning to
allow thorough experimentation. ID-ALVINN retains much of the complexity of
the original 2-D domain-the complexity lost is road curvature and that due to the
smaller input (960 pixels vs. 32 pixels). The principle task in ID-ALVINN is to
predict steering direction. Eight additional tasks were used for multitask backprop:

• whether the road is one or two lanes • location of centerline (2-lane roads only)
• location of left edge of road • location of right edge of road
• location of road center • intensity of road surface
• intensity of region bordering road • intensity of centerline (2-lane roads only)

2We have yet to determine how to directly test the hypothesis that representations
for F in the intersection of T and T' perform better. Testing this requires interpreting
representations learned for real tasks; experiments on test problems demonstrate only that
search is biased towards the intersection, not that the intersection is the right place to be.

Learning Many Related Tasks at the Same Time with Backpropagation 661

Table 1 shows the performance of single and multitask backprop (STB and MTB,
respectively) on 1D-ALVINN using nets with one hidden layer. The MTB net has
32 inputs, 16 hidden units, and 9 outputs. The 36 STB nets have 32 inputs, 2, 4,
8 or 16 hidden units, and 1 output. A similar experiment using nets with 2 hidden
layers containing 2, 4, 8, 16, or 32 hidden units per layer for STB and 32 hidden
units per layer for MTB yielded comparable results. The size of the MTB nets is
not optimized in either experiment.

Table 1: Performance of STB and MTB with One Hidden Layer on 1D-ALVINN

II ROOT-MEAN SQUARED ERROR ON TEST SET
TASK Single Task Backprop MTB % Change % Change

2HU T 4HU I 8HU f 16HU 16HU Best STB Mean STB

1 or 2 Lanes .201 .209 .207 .178 .156 14.1 27.4
Left Edge .069 .071 .073 .073 .062 11.3 15.3
Right Edge .076 .062 .058 .056 .051 9.8 23.5
Line Center .153 .152 .152 .152 .151 0.7 0.8
Road Center .038 .037 .039 .042 .034 8.8 14.7
Road Greylevel .054 .055 .055 .054 .038 42.1 43.4
Edge Greylevel .037 .038 .039 .038 .038 -2.6 0.0
Line Greylevel .054 .054 .054 .054 .054 0.0 0.0
Steering .093 .069 .087 .072 .058 19.0 38.4

The entries under the STB and MTB headings are the peak generalization error
for nets of the specified size. The italicized STB entries are the STB runs that
yielded best performance. The last two columns compare STB and MTB. The first
is the percent difference between MTB and the best STB run. Positive percentages
indicate MTB performs better. This test is biased towards STB because it compares
a single run of MTB on an unoptimized net size with several independent runs of
STB that use different random seeds and are able to find near-optimal net size. The
last column is the percent difference between MTB and the average STB. Note that
on the important steering task, MTB outperforms STB 20-40%.

3.2 ID-DOORS

To test multitask backprop on a real problem, we created an object recognition
domain similar in some respects to 1D-ALVINN. In 1D-DOORS the main tasks
are to locate doorknobs and recognize door types (single or double) in images of
doors collected with a robot-mounted camera. Figure 1 shows several door images.
As with 1D-ALVINN, the problem was simplified by using horizontal stripes from
image, one for the green channel and one for the blue channel. Each stripe is 30
pixels wide (accomplished by applying Gaussian smoothing to the original 150 pixel
wide image) and occurs at the vertical location of the doorknob. 10 tasks were used:

• horizontal location of doorknob • single or double door
• horizontal location of doorway center • width of doorway
• horizontal location of left door jamb • horizontal location of right door jamb
• width of left door jamb • width of right door jamb
• horizontal location of left edge of door • horizontal location of right edge of door

The difficulty of 1D-DOORS precludes running as exhaustive a set of experiments
as with 1D-ALVINN: runs were done only for the two most important and difficult
tasks: doorknob location and door type. STB was tested on nets using 6, 24, and
96 hidden units. MTB was tested on a net with 120 hidden units. The results

662 Rich Caruana

Figure 1: Sample Doors from the ID-DOORS Domain

are in Table 2. STB generalizes 35-45% worse than MTB on these tasks. Less
thorough experiments on the other eight tasks suggest MTB probably always yields
performance equal to or better than STB.

Table 2: Performance of STB and MTB on ID-DOORS.

RMS ERROR ON TEST SET
TASK

Doorknob Loc
Door Type

4 DISCUSSION

In our experience, multitask backprop usually generalizes better than single task
backprop. The few cases where STB has been better is on simpler tasks, and there
the difference between MTB and STB was small. Multitask backprop appears to
provide the most benefit on hard tasks. MTB also usually learns in fewer epochs
than STB. When all tasks must be learned, MTB is computationally more efficient
than training single nets. When few tasks are important, however, STB is usually
more efficient (but also less accurate).

Tasks do not always learn at the same rate. It is important to watch the training
curve of each MTB task individually and stop training each task when its per
formance peaks. The easiest way to do this to take a snapshot of the net when
performance peaks on a task of interest. MTB does not mean one net should be
used to predict all tasks, only that all tasks should be trained on one net so they
may benefit each other. Do not treat tasks as one task just because they are being
trained on one net! Balancing tasks (e.g., using different learning rates for different
outputs) sometimes helps tasks learn at similar rates, thus maximizing the potential
benefits of MTB. Also, because the training curves for MTB are often more com
plex due to interactions between tasks (MTB curves are frequently multimodal), it
is important to train MTB nets until all tasks appear to be overtraining. Restrict
ing the capacity of MTB nets to force sharing or prevent overtraining usually hurts
performance instead of helping it. MTB does not depend on restricted net capacity.

We created the extra tasks in ID-ALVINN and ID-DOORS specifically because
we thought they would improve performance on the important tasks. Multitask
backprop can be used in other ways. Often the world gives us related tasks to
learn. For example, the Calendar Apprentice System (CAP)[4] learns to predict
the Location, Time_Of _Day, Day_Of _Week, and Duration of the meetings it
schedules. These tasks are functions of the same data, share many common features,

Learning Many Related Tasks at the Same Time with Backpropagation 663

and would be easy to learn together. Sometimes the world gives us related tasks
in mysterious ways. For example, in a medical domain we are examining where
the goal is to predict illness severity, half of the lab tests are cheap and routinely
measured before admitting a patient (e.g., blood pressure, pulse, age). The rest are
expensive tests requiring hospitalization. Users tell us it would be useful to predict
if the severity of the illness warrants admission (and further testing) using just the
pre-admission tests. Rather than ignore the most diagnostically useful information
in the database, we use the expensive tests as additional tasks the net must learn.
They are not very predictable from the simple pre-admission tests, but providing
them to the net as outputs helps it learn illness severity better. Multitask backprop
is one way of providing to a net information that at run time would only be available
in the future. The training signals are needed only for the training set because they
are outputs-not inputs-to the net.

5 RELATED WORK

Training nets with many outputs is not new; NETtalk [9] used one net to learn
phonemes and stress. This approach was natural for NETtalk where the goal was
to control a synthesizer that needed both phoneme and stress commands at the
same time. No analysis, however, was made of the advantages of using one net for
all the tasks3 , and the different outputs were not treated as independent tasks. For
example, the NETtalk stress task overtrains badly long before the phoneme task is
learned well, but NETtaik did not use different snapshots of the net for different
tasks. NETtalk also made no attempt to balance tasks so that they would learn at
a similar rate, or to add new tasks that might improve learning but which would
not be useful for controlling the synthesizer.

Work has been done on serial transfer between nets [8]. Improved learning speed was
reported, but not improved generalization. The key difficulties with serial transfer
are that it is difficult to scale to many tasks, it is hard to prevent catastrophic in
terference from erasing what was learned previously, the learning sequence must be
defined manually, and serial learning precludes mutual benefit between tasks. This
work is most similar to catalytic hints [1][10] where extra tasks correspond to im
portant learnable features of a main task. This work extends hints by showing that
tasks can be related in more diverse ways, by expanding the class of mechanisms
responsible for multitask backprop, by showing that capacity restriction is not an
important mechanism for multitask backprop [2], and by demonstrating that cre
ating many new related tasks may be an efficient way of providing domain-specific
inductive bias to backprop nets.

6 FUTURE WORK

We used vanilla backprop to show the benefit of training many related tasks on
one net. Additional techniques may enhance the effects. Regularization and incre
mental net growing procedures might improve performance by promoting sharing
without restricting capacity. New techniques may also be necessary to enhance the
benefit of multitask backprop. Automatic balancing of task learning rates would
make MTB easier to use. It would also be valuable to know when the different
MTB mechanisms are working-they might be useful in different kinds of domains
and might benefit from different regularization or balancing techniques. Finally,
although MTB usually seems to help and rarely hurts, the only way to know it

3See [5] for evidence that NETtalk is harder to learn using separate nets.

664 Rich Caruana

helps is to try it. It would be better to have a predictive theory of how tasks should
relate to benefit MTB, particularly if new tasks are to be created only to provide a
multitask benefit for the other important tasks in the domain.

7 SUMMARY

Five mechanisms that improve generalization performance on nets trained on mul
tiple related tasks at the same time have been identified. These mechanisms work
without restricting net capacity or otherwise reducing the net's VC-dimension. In
stead, they exploit backprop's ability to combine the error terms for related tasks
into an aggregate gradient that points towards better underlying represen tations.
Multitask backprop was tested on a simulated domain, ID-ALVINN, and on a real
domain, ID-DOORS. It improved generalization performance on hard tasks in these
domains 20-40% compared with the best performance that could be obtained from
multiple trials of single task backprop.

Acknowledgements

Thanks to Tom Mitchell, Herb Simon, Dean Pomerleau, Tom Dietterich, Andrew
Moore, Dave Touretzky, Scott Fahlman, Sebastian Thrun, Ken Lang, and David
Zabowski for suggestions that have helped shape this work. This research is spon
sored in part by the Advanced Research Projects Agency (ARPA) under grant
no. F33615-93-1-1330.

References

[1] Y.S. Abu-Mostafa, "Learning From Hints in Neural Networks," Journal of
Complexity 6:2, pp. 192-198,1989.

[2] Y.S. Abu-Mostafa, "Hints and the VC Dimension," Neural Computation, 5:2,
1993.

[3] R. Caruana, "Multitask Connectionist Learning," Proceedings of the 1993 Con
nectionist Models Summer School, pp. 372-379, 1993.

[4] L. Dent, J. Boticario, J. McDermott, T. Mitchell, and D. Zabowski, "A Per
sonal Learning Apprentice," Proceedings of 1992 National Conference on Ar
tificial Intelligence, 1992.

[5] T.G. Dietterich, H. Hild, and G. Bakiri, "A Comparative Study of ID3 and
Backpropagation for English Text-to-speech Mapping," Proceedings of the Sev
enth International Conference on Artificial Intelligence, pp. 24-31, 1990.

[6] G.E. Hinton, "Learning Distributed Representations of Concepts," Proceedings
of the Eight International Conference of The Cognitive Science Society, pp. 1-
12, 1986.

[7] D.A. Pomerleau, "Neural Network Perception for Mobile Robot Guidance,"
Carnegie Mellon University: CMU-CS-92-115, 1992.

[8] L.Y. Pratt, J. Mostow, and C.A. Kamm, "Direct Transfer of Learned Informa
tion Among Neural Networks," Proceedings of AAAI-91, 1991.

[9] T.J. Sejnowski and C.R. Rosenberg, "NETtalk: A Parallel Network that Learns
to Read Aloud ," John Hopkins: JHU/EECS-8'6/01, 1986.

[10] S.C. Suddarth and A.D.C. Holden, "Symbolic-neural Systems and the Use
of Hints for Developing Complex Systems," International Journal of Max
Machine Studies 35:3, pp. 291-311, 1991.

