
Encoding Labeled Graphs by Labeling
RAAM

Alessandro Sperduti*
Department of Computer Science

Pisa University
Corso Italia 40, 56125 Pisa, Italy

Abstract

In this paper we propose an extension to the RAAM by Pollack.
This extension, the Labeling RAAM (LRAAM), can encode la­
beled graphs with cycles by representing pointers explicitly. Data
encoded in an LRAAM can be accessed by pointer as well as by
content. Direct access by content can be achieved by transform­
ing the encoder network of the LRAAM into an analog Hopfield
network with hidden units. Different access procedures can be
defined depending on the access key. Sufficient conditions on the
asymptotical stability of the associated Hopfield network are briefly
introduced.

1 INTRODUCTION

In the last few years, several researchers have tried to demonstrate how symbolic
structures such as lists, trees, and stacks can be represented and manipulated in a
connectionist system, while still preserving all the computational characteristics of
connectionism (and extending them to the symbolic representations) (Hinton, 1990;
Plate, 1991; Pollack, 1990; Smolensky, 1990; Touretzky, 1990). The goal is to high­
light the potential of the connectionist approach in handling domains of structured
tasks. The common background of their ideas is an attempt to achieve distal access
and consequently compositionality. The RAAM model, proposed by Pollack (Pol­
lack, 1990), is one example of how a neural network can discover compact recursive

"Work partially done while at the International Computer Science Institute, Berkeley.

1125

1126 Sperduti

Output Layer

Hidden Layer

Input Layer

Label

Figure 1: The network for a general LRAAM. The first layer of the network imple­
ments an encoder; the second layer, the corresponding decoder.

distributed representations of trees with a fixed branching factor.

This paper presents an extension of the RAAM, the Labeling RAAM (LRAAM).
An LRAAM allows one to store a label for each component of the structure to be
represented, so as to generate reduced representations of labeled graphs. Moreover,
data encoded in an LRAAM can be accessed not only by pointer but also by content.
In Section 2 we present the network and we discuss some technical aspects of the
model. The possibility to access data by content is presented in Section 3. Some
stability results are introduced in Section 4, and the paper is closed by discussion
and conclusions in Section 5.

2 THE NETWORK

The general structure of the network for an LRAAM is shown in Figure 1. The
network is trained by backpropagation to learn the identity function. The idea is to
obtain a compressed representation (hidden layer activation) of a node of a labeled
graph by allocating a part of the input (output) of the network to represent the
label (Nl units) and the remaining part to represent one or more pointers. This
representation is then used as pointer to the node. To allow the recursive use of these
compressed representations, the part of the input (output) layer which represents
a pointer must be of the same dimension as the hidden layer (N H units) . Thus, a
general LRAAM is implemented by a NJ - N H - NJ feed-forward network, where
NJ = Nl + nN H, and n is the number of pointer fields.

Labeled graphs can be easily encoded using an LRAAM. Each node of the graph
only needs to be represented as a record, with one field for the label and one
field for each pointer to a connected node. The pointers only need to be logical
pointers, since their actual values will be the patterns of hidden activation of the
network. At the beginning of learning, their values are set at random. A graph is
represented by a list of these records, and this list constitutes the initial training set
for the LRAAM. During training the representations of the pointers are consistently
updated according to the hidden activations. Consequently, the training set is
dynamic. For example, the network for the graph shown in Figure 2 can be trained
as follows:

Encoding Labeled Graphs by Labeling RAAM

input hidden output

(Ll dn2 dn4 dn5) - d~1 - (L" d" d" d") 1 n2 n4 n5
(L2 dn3 dn4 nil) - d~2 - (L" d" d" nil") 2 n3 n4
(L3 dn6 nil nil) - d~3 - (L" d" nil" nil") 3 n6
(L4 dn6 dn3 nil) - d~4 - (L" d" d" nil") 4 n6 n3
(L5 dn4 dn6 nil) - d~5 - (L" d" d" nil") 5 n4 n6
(L6 nil nil nil) - d~6 - (L~ nil" nil" nil")

where Li and dni are respectively the label and the pointer (reduced descriptor to
the i-th node. For the sake of simplicity, the void pointer is represented by a single
symbol, nil, but each instance of it must be considered as being different. This
statement will be made clear in the next section.

Once the training is complete, the patterns of activation representing pointers can be
used to retrieve information. Thus, for example, if the activity of the hidden units of
the network is clamped to dn1 , the output of the network becomes (Ll ,dn2 ,dn4 ,dn5),
enabling further retrieval of information by decoding dn2 , or dn4 , or dn5 , and so on.
Note that more labeled graphs can be encoded in the same LRAAM.

2.1 THE VOID POINTER PROBLEM

In the RAAM model there is a termination problem in the decoding of a compressed
representation: due to approximation errors introduced during decoding, it is not
clear when a decoded pattern is a terminal or a nonterminal. One solution is to test
for "binary-ness", which consists in checking whether all the values of a pattern are
above 1 - T or below T, T > 0, T « 1. However, a nonterminal may also pass the
test for "binary-ness".

One advantage of LRAAM over RAAM is the possibility to solve the problem by
allocating one bit of the label for each pointer to represent if the pointer is void or
not. This works better than fixing a particular pattern for the void pointer, such
as a pattern with all the bits to 1 or 0 or -1 (if symmetrical sigmoids are used).
Simulations performed with symmetrical sigmoids showed that the configurations
with all bits equal to 1 or -1 were also used by non void pointers, whereas the
configuration with all bits set to zero considerably reduced the rate of convergence.
U sing a part of the label to solve the problem is particularly efficient, since the
pointer fields are free to take on any configuration when they are void, and this
increases the freedom of the system. To facilitate learning, the output activation
of the void pointers in one epoch is used as an input activation in the next epoch.
Experimentation showed fast convergence to different fixed points for different void

Figure 2: An example of a labeled graph.

1127

1128 Sperduti

pointers. For this reason, we claimed that each occurrence of the void pointer is
different, and that the nil symbol can be considered as a "don't care" symbol.

2.2 REPRESENTATION OF THE TRAINING SET

An important question about the way a graph is represented in the training set
is which aspects of the representation itself can make the encoding task harder
or easier. In (Sperduti, 1993a) we made a theoretical analysis on the constraints
imposed by the representation on the set of weights of the LRAAM, under the
hypotheses of perfect learning (zero total error after learning) and linear output
units. Our findings were:

i) pointers to nodes belonging to the same cycle of length k and represented in
the same pointer field p, must be eigenvectors of the matrix (W(p))k, where
W(p) is the connection matrix between the hidden layer and the output
units representing the pointer field p;

ii) confluent pointers, i.e., pointers to the same node represented in the same
pointer field p (of different nodes), contribute to reducing the rank of the
matrix W(p), the actual rank is however dependent on the constraints im­
posed by the label field and the other pointer fields.

We have observed that different representations of the same structure can lead to
very different learning performances. However, representations with roughly the
same number of non void pointers for each pointer field, with cycles represented in
different pointer fields and with confluent pointers seem to be more effective.

3 ACCESS BY CONTENT

Retrieval of coded information is performed in RAAM through the pointers. All the
terminals and nonterminals can be retrieved recursively by the pointers to the whole
tree encoded in a RAAM. If direct access to a component of the tree is required,
the pointer to the component must be stored and used on demand.

Data encoded in an LRAAM can also be accessed directly by content. In fact, an
LRAAM network can be transformed into an analog Hopfield network with one
hidden layer and asymmetric connection matrix by feeding back its output into its
input units. 1 Because each pattern is structured in different fields, different access

1 Experimental results have shown that there is a high correlation between elements of
W(h) (the set of weights from the input to the hidden layer) and the corresponding elements

in W(o)T (the set of weights from the hidden to the output layer). This is particularly true
for weights corresponding to units of the label field. Such result is not a total surprise,
since in the case of a static training set, the error function of a linear encoder network has
been proven to have a unique global minimum corresponding to the projection onto the
subspace generated by the first principal vectors of a covariance matrix associated with the
training set (Baldi & Hornik, 1989). This implies that the weights matrices are transposes
of each other unless there is an invertible transformation between them (see also (Bourlard
& Kamp, 1988)) .

Encoding Labeled Graphs by Labeling RAAM 1129

n2=.-r..~=

n5
=100=00=-==.=1.1

n9 nlO
~IQl R",.~.=.

nl4 /n15 \
101 •• 101.1. 1 O~.=lctJ~.=I.1

Figure 3: The labeled graph encoded in a 16-3-16 LRAAM (5450 epochs), and the
labeled tree encoded in a 18-6-18 LRAAM (1719 epochs).

procedures can be defined on the Hopfield network according to the type of access
key. An access procedure is defined by:

1. choosing one or more fields in the input layer according to the access key(s);

2. clamping the output of such units to the the access key(s);

3. setting randomly the output of the remaining units in the network;

4. letting the remaining units of the network to relax into a stable state.

A validation test of the reached stable state can be performed by:

1. unfreezing the clamped units in the input layer;

2. if the stable state is no longer stable the result of the procedure is considered
wrong and another run is performed;

3. otherwise the stable state is considered a success.

This validation test, however, sometimes can fail to detect an erroneous retrieval
(error) because of the existence of spurious stable states that share the same known
information with the desired one.

The results obtained by the access procedures on an LRAAM codifying the graph
and on an LRAAM codifying the tree shown in Figure 3 are reported in Table
1. For each procedure 100 trials were performed. The "mean" column in the
table reports the mean number of iterations employed by the Bopfield network to
converge. The access procedure by outgoing pointers was applied only for the tree.
It can be seen from Table 1 that the performances of the access procedures were
high for the graph (no errors and no wrong retrievals), but not so good for the
tree, in particular for the access by label procedure, due to spurious memories. It is
interesting to note that the access by label procedure is very efficient for the leaves
of the tree. This feature can be used to build a system with two identical networks,
one accessed by pointer and the other by content. The search for a label proceeds
simultaneously into the two networks. The network accessed by pointer will be very
fast to respond when the label is located on a node at lower levels of the tree, and
the network accessed by content will be able to respond correctly and very fast "2

when the label is located on a node at higher levels of the tree.

2 Assuming an analog implementation of the Hopfield network.

1130 Sperduti

GRAPH: Access by Label TREE: Access by Label
key(s) success wrong error mean key success wrong error mean

io 100% 0% 0% 7.35 io 0% 100% 0% 16.48
i1 100% 0% 0% 36.05 it 94% 6% 0% 14.57
i2 100% 0% 0% 6.04 i2 47% 53% 0% 16.92
i3 100% 0% 0% 3.99 i3 100% 0% 0% 18.07
i4 100% 0% 0% 23.12 i4 97% 0% 3% 32.64
15 100% 0% 0% 18.12 15 100% 0% 0% 16.03
i6 100% 0% 0% 29.26 16 49% 51% 0% 27.50
TREE: Access by Children Pointers i7 42% 58% 0% 27.10

(d1 , d2) 49% 51% 0% 6.29 is 57% 43% 0% 62.45
(d3,d4) 10% 90% 0% 8.55 i9 20% 0% 80% 14.75
(d5, d6) 40% 60% 0% 12.48 11O 100% 0% 0% 19.11
(d7 , ds) 78% 22% 0% 6.57 III 100% 0% 0% 10.83
(d9, d lO) 9% 91% 0% 6.22 lt2 100% 0% 0% 19.12

d~~) 14% 86% 0% 14.01 it3 29% 71% 0% 23.87
(d12 ,d13) 14% 86% 0% 7.87 114 100% 0% 0% 12.09
ld14, d 15) 28% 72% 0% 6.07 115 100% 0% 0% 13.11
(*) one pointer

Table 1: Results obtained by the access procedures.

4 STABILITY RESULTS

In the LRAAM model two stability problems are encountered. The first one arises
when considering the decoding of a pointer along a cycle of the encoded structures.
Since the decoding process suffers, in general, of approximation errors, it may hap­
pen that the decoding diverges from the correct representations of the pointers
belonging to the cycle. Thus, it is fundamental to discover under which conditions
the representations obtained for the pointers are asymptotically stable with respect
to the pointer transformation. In fact, if the representations are asymptotically
stable, the errors introduced by the decoding function are automatically corrected.
The following theorem can be proven (Sperduti, 1993b):

Theorem 1 A decoding sequence

l(i;+I) = F(p';)(l(iJ»), j = 0, .. . ,L (1)

with l(iL+d = l(to) , satisfying
m

L Ibikl < 1, i = 1, ... ,m (2)
k=l

for some index Pi'l' q = 0, ... , L, is asymptotically stable, where btk is the (i, k) th
element of a matrix B, given by

B = J(P"I) (l(i'l))J(P"I-l) (l(i'l_ J)) ... J(p'{J) (l(io))J(p, L \ l(iL») ... J(P"I+l) (d (i'l+d).

In the statement of the theorem, F(p;) (l) = F(D(p;)l+~;») is the transformation

of the reduced descriptor (pointer) d by the pointer field Pj, and J(pJ)(l) is its

Encoding Labeled Graphs by Labeling RAAM 1131

Jacobian matrix. As a corollary of this theorem we have that if at least one pointer
belonging to the cycle has saturated components, then the cycle is asymptotically
stable with respect to the decoding process. Moreover, the theorem can be applied
with a few modifications to the stability analysis of the fixed points of the associated
Hopfield network.

The second stability problem consists into the discovering of sufficient conditions
under which the property of asymptotical stability of a fixed point in one particular
constrained version of the associated Hopfield network, i.e., an access procedure,
can be extended to related fixed points of different constrained versions of it, i.e.,
access procedures with more information or different information. The result of
Theorem 1 was used to derive three theorems regarding this issue (see (Sperduti,
1993b)).

5 DISCUSSION AND CONCLUSIONS

The LRAAM model can be seen from various perspectives. It can be considered as
an extension of the RAAM model, which allows one to encode not only trees with
information on the leaves, but also labeled graphs with cycles. On the other hand,
it can be seen as an approximate method to build analog Hopfield networks with
a hidden layer. An LRAAM is probably somewhere in between. In fact, although
it extends the representational capabilities of the RAAM model, it doesn't possess
the same synthetic capabilities as the RAAM, since it explicitly uses the concept
of pointer. Different subsets of units are thus used to codify labels and pointers.
In the RAAM model, using the same set of units to codify labels and reduced
representations is a more natural way of integrating a previously developed reduced
descriptor as a component of a new structure. In fact, this ability was Pollack's
original rationale behind the RAAM model, since with this ability it is possible to fill
a linguistic role with the reduced descriptor of a complex sentence. In the LRAAM
model the same target can be reached, but less naturally. There are two possible
solutions. One is to store the pointer of some complex sentence (or structure, in
general), which was previously developed, in the label of a new structure. The
other solution would be to have a particular label value which tells us that the
information we are looking for can be retrieved using one conventional or particular
pointer among the current ones.

An issue strictly correlated with this is that, even if in an LRAAM it is possible
to encode a cycle, what we get from the LRAAM is not an explicit reduced repre­
sentation of the cycle, but several pointers to the components of the cycle forged
in such a way that the information on the cycle is only represented implicitly in
each of them. However, the ability to synthesize reduced descriptors for structures
with cycles is what makes the difference between the LRAAM and the RAAM. The
only system that we know of which is able to represent labeled graphs is the DUAL
system proposed by Dyer (Dyer, 1991). It is able to encode small labeled graphs
representing relationships among entities. However, the DUAL system cannot be
considered as being on the same level as the LRAAM, since it devises a reduced
representation of a set of functions relating the components of the graph rather
than a reduced representation for the graph. Potentially also Holographic Reduced
Representations (Plate, 1991) are able to encode cyclic graphs.

1132 Sperduti

The LRAAM model can also be seen as an extension of the Hopfield networks
philosophy. A relevant aspect of the use of the Hopfield network associated with an
LRAAM, is that the access procedures defined on it can efficiently exploit subsets
of the weights. In fact, their use corresponds to generating several smaller networks
from a large network, one for each kind of access procedure, each specialized on a
particular feature of the stored data. Thus, by training a single network, we get
several useful smaller networks.

In conclusion an LRAAM has several advantages over a standard RAAM. Firstly,
it is more powerful, since it allows to encode directed graphs where each node has
a bounded number of outgoing arcs. Secondly, an LRAAM allows direct access to
the components of the encoded structure not only by pointer, but also by content.
Concerning the applications where LRAAMs can be exploited, we believe there are
at least three possibilities: in knowledge representation, by encoding Conceptual
Graphs (Sowa, 1984); in unification, by representing terms in restricted domains
(Knight, 1989); in image coding, by storing Quadtrees (Samet, 1984);

References

P. Baldi & K. Hornik. (1989) Neural networks and principal component analysis: Learning
from examples without local minima. Neural Networks, 2:53-58.

H. Bourlard & Y. Kamp. (1988) Auto-association by multilayer perceptrons and singular
value decomposition. Biological Cybernetics, 59:291-294.

M. G. Dyer. (1991) Symbolic NeuroEngineering for Natural Language Processing: A Multi­
level Research Approach., volume 1 of Advances in Connectionist and Neural Computation
Theory, pages 32-86. Ablex.

G. E. Hinton. (1990) Mapping part-whole hierarchies into connectionist networks. A rtifi­
cial Intelligence, 46:47-75.

K. Knight. (1989) Unification: A multidisciplinary survey. A CM Computing Surveys,
21:93-124.

T. Plate. (1991) Holographic reduced representations. Technical Report CRG-TR-91-1,
Department of Computer Science, University of Toronto.

J. B. Pollack. (1990) Recursive distributed representations. Artificial Intelligence, 46(1-
2):77-106.

H. Samet. (1984) The quadtree and related hierarchical data structures. A CM Computing
Surveys, 16:187-260.

P. Smolensky. (1990) Tensor product variable binding and the representation of symbolic
structures in connectionist systems. Artificial Intelligence, 46:159-216.

J.F. Sowa. (1984) Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley.

A. Sperduti. (1993a) Labeling RAAM. TR 93-029, ICSI, Berkeley.

A. Sperduti. (1993b) On some stability properties of the LRAAM model. TR 93-031,
ICSI, Berkeley.

D. S. Touretzky. (1990) Boltzcons: Dynamic symbol structures in a connectionist network.
A rtificial Intelligence, 46:5-46.

PART XI

ADDENDA TO NIPS 5

