
Learning in Compositional Hierarchies: 
Inducing the Structure of Objects from Data 

Joachim Utans 
Oregon Graduate Institute 

Department of Computer Science and Engineering 
P.O. Box 91000 

Portland, OR 97291-1000 
utans@cse.ogi.edu 

Abstract 

I propose a learning algorithm for learning hierarchical models for ob
ject recognition. The model architecture is a compositional hierarchy 
that represents part-whole relationships: parts are described in the lo
cal context of substructures of the object. The focus of this report is 
learning hierarchical models from data, i.e. inducing the structure of 
model prototypes from observed exemplars of an object. At each node 
in the hierarchy, a probability distribution governing its parameters must 
be learned. The connections between nodes reflects the structure of the 
object. The formulation of substructures is encouraged such that their 
parts become conditionally independent. The resulting model can be 
interpreted as a Bayesian Belief Network and also is in many respects 
similar to the stochastic visual grammar described by Mjolsness. 

1 INTRODUCTION 

Model-based object recognition solves the problem of invariant recognition by relying on 
stored prototypes at unit scale positioned at the origin of an object-centered coordinate 
system. Elastic matching techniques are used to find a correspondence between features of 
the stored model and the data and can also compute the parameters of the transformation the 
observed instance has undergone relative to the stored model. An example is the TRAFFIC 
system (Zemel, Mozer and Hinton, 1990) or the Frameville system (Mjolsness, Gindi and 
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Figure I: Example of a compositional 
hierarchy. The simple figure can be 
represented as hierarchical composi
tion of parts. The hierarchy can 
be represented as a graph (a tree in 
this case). Nodes represent parts and 
edges represent the structural relation
ship. Nodes at the bottom represent 
individual parts of the object; nodes 
at higher levels denote more complex 
substructures. The single node at the 
top of the tree represents the entire ob
ject. 

Anandan, 1989; Gindi, Mjolsness and Anandan, 1991; Vtans, 1992). Frameville stores 
models as compositional hierarchies and by matching at each level in the hierarchy reduces 
the combinatorics of the match. 

The attractive feature of feed-forward neural networks for object recognition is the relative 
ease with which their parameters can be learned from training data. Multilayer feed-forward 
networks are typically trained on input/output pairs (supervised learning) and thus are tuned 
to recognize instances of objects as seen during training. Difficulties arise if the observed 
object appears at a different position in the input image, is scaled or rotated, or has been 
subject to distortions. Some of these problems can be overcome by suitable preprocessing or 
judicious choice of features. Other possibilities are weight sharing (LeCun, Boser, Denker, 
Henderson, Howard, Hubbard and Jackel, 1989) or invariant distance measures (Simard, 
LeCun and Denker, 1993). 

Few attempts have been reported in the neural network literature to learn the prototype 
models for model based recognition from data. For example, the Frameville system uses 
hand-designed models. However, models learned from data and reflecting the statistics of 
the data should be superior to the hand-designed models used previously. Segen (1988a; 
1988b) reports an approach to learning structural descriptions where features are clustered 
to substructures using a Minimum Description Length (MDLJ criterion to obtain a sparse 
representation. Saund (1993) has proposed a algorithm for constructing tree presentation 
with multiple "causes" where observed data is accounted for by multiple substructures at 
higher levels in the hierarchy. Veda and Suzuki (1993) have developed an algorithm for 
learning models from shape contours using multiscale convex/concave structure matching 
to find a prototype shape typical for exemplars from a given class. 

2 LEARNING COMPOSITIONAL HIERARCHIES 

The algorithm described here merges parts by means of grouping variables to form sub
structures. The model architecture is a compositional hierarchy, i.e. a part-whole hierarchy 
(an example is shown in Figure 1). The nodes in the graph represent parts and substruc
tures, the arcs describe the structure of the object. At each node a probability density for 
part parameters is stored. A prominent advocate of such models has been Marr (1982) 
and models of this type are used in the Frameville system (Mjolsness et ai., 1989; Gindi 
et al., 1991; Vtans, 1992). The nodes in the graph represent parts and substructures, the 
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Figure 2: Examples of differ
ent compositional hierarchies for 
the same object (the digit 9 for 
a seven-segment LED display). 
One model emphasizes the paral
lel lines making up the square in 
the top part of the figure while for 
another model angles are chosen 
as intermediate substructures. The 
example on the right shows a hier
archy that "reuses" parts. 

arcs describe the structure of the object. The arcs can be regarded as "part-of" or "ina" 
relationships (similar to the notion used in semantic networks). At each node a probability 
density for part parameters such as position, size and orientation is stored. 

The model represents a typical prototype object at unit scale in an object-centered coordinate 
system. Parameters of parts are specified relative to parameters of the parent node in the 
hierarchy. Substructures thus provide a local context for their parts and decouple their parts 
from other parts and substructures in the model. The advantages of this representation are 
sparseness, invariance with respect to viewpoint transformations and the ability to model 
local deformations. In addition, the model explicitly represents the structure of an object 
and emphasizes the importance of structure for recognition (Cooper, 1989). 

Learning requires estimating the parameters of the distributions at each node (the mean and 
variance in the case of Gaussians) and finding the structure of model. The emphasis in this 
report is on learning structure from exemplars. The parameterization of substructures may 
be different than for the parts at the lowest level and become more complex and require more 
parameters as the substructures themselves become more complex. The representation as 
compositional hierarchy can avoid overfitting since at higher levels in the hierarchy more 
exemplars are available for parameter estimation due to the grouping of parts (Omohundro, 
1991). 

2.1 Structure and Conditional Independence: Bayesian Networks 

In what way should substructures be allocated? Figure 2 shows examples of different 
compositional hierarchies for the same object (the digit 9 for a seven-segment LED display). 
One model emphasizes the parallel lines making up the square in the top part of the figure 
while for another model angles are chosen as intermediate substructures. It is not clear 
which of these models to choose. 

The important benefit of a hierarchical representation of structure is that parts belonging to 
different substructures become decoupled, i.e. they are assigned to a different local context. 
The problem of constructing structured descriptions of data that reflect this independence 
relationship has been studied previously in the field of Machine Learning (see (Pearl, 1988) 
for a comprehensive introduction). The resulting models are Bayesian Belief Networks. 
Central to the idea of Bayesian Networks is the assumption that objects can be regarded 
as being composed of components that only sparsely interact and the network captures 
the probabilistic dependency of these components. The network can be represented as 
an interaction graph augmented with conditional probabilities. The structure of the graph 
represents the dependence of variables, i.e. connects them with and arc. The strength of the 
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Figure 3: Bayesian Networks and conditional 
independence (see text). 
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Figure 4: The model architecture. Circles denote 
the grouping variables ina (here a possible valid 
model after leaming is shown). 

dependence is expressed as forward conditional probability. The conditional independence 
is represented by the absence of an arc between two nodes and leads to the sparseness of 
the model. 

The notion of conditional independence in the context studied here manifest itself as follows. 
By just observing two parts in the image, one must assume that they, i.e. their parameters 
such as position, are dependent and must be modeled using their joint distribution. How
ever, if one knows that these two parts are grouped to form a substructure then knowing 
the parameters of the substructure, the parts become conditionally independent, namely 
conditioned on the parameters of the substructure. Thus, the internal nodes representing the 
substructures summarize the interaction of their child nodes. The correlation between the 
child nodes is summarized in the parent node and what remains is, for example, independent 
noise in observed instances of the child nodes. 

The probability of observing an instance can be calculated from the model by starting at 
the root node and multiplying with the conditional probabilities of nodes traversed until the 
leaf nodes are reached. For example, given the graph in Figure 3, the joint distribution can 
be factored as 

P(Xl' Yl, Y2, zl, Z2, z3, Z4) = 
P(Xd P (Yllxd P (Zllyd P (ZlIYl)P(Z2IYl )P(z3IY2)P(Z4IY2) (I) 

(note that the hidden nodes are treatedjust like the nodes corresponding to observable parts). 

Note that the stochastic visual grammar described by Mjolsness (1991) is equivalent to this 
model. The model used there is a stochastic forward (generative) model where each level 
of the compositional hierarchy corresponds to a stochastic production rule that generates 
nodes in the next lower level. The distribution of parameters at the next lower level 
are conditioned on the parameters of the parent node. Thus, the model obtained from 
constructing a Bayesian network is equivalent to the stochastic grammar if the network is 
constrained to a directed acyclic graph (DAG). 

If all the nodes of the network correspond to observable events, techniques exist for finding 
the structure of the Bayesian Network and estimate its parameters (Pearl, 1988) (see also 
(Cooper and Herskovits, 1992)}. However, for the hierarchical models considered here, 
only the nodes at the lowest layer (the leaves of the tree) correspond to observable instances 
of parts of the object in the training data. The learning algorithm must induce hidden, 
unobservable substructures. That is, it is assumed that the observables are "caused" by 
internal nodes not directly accessible. These are represented as nodes in the network just 
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like the observables and their parameters must be estimated as well. See (Pearl, 1988) for 
an extensive discussion and examples of this idea. 

Learning Bayesian networks is a hard problem when the network contains hidden nodes 
but a construction algorithm exists if it is known that the data is in fact tree-decomposable 
(Pearl, 1988). The methods is based on computing the correlations p between child nodes 
and constraints on the correlation coefficients dictated by a particular structure. The entire 
tree can be constructed recursively using this method. Here, the case of Normal-distributed 
real-valued random variables is of interest: 

1 1 (1 T -I ) p(XI, ... , Xn) = ~ Vdet'f exp --(x - p) :E (x - p) 
v2?r detL 2 

(2) 

where x = (XI, X2, ... ,xn ) with mean p = E{x} and covariance matrix :E = E{(x -
p)(x - p)T} The method is based on a condition under which a set of random variables 
is star-decomposable. The question one ask is whether a set of n random variables can 
be represented as the marginal distribution of n + 1 variables XI, ... , X n , W such that the 
XI, ... , Xn are conditionally independent given w, i.e. 

(3) 

J p(XI, ... , Xn, w)dw (4) 

In the graph representation of the Bayesian Network w is the central node relating the 
XI, ... ,Xn , hence the name star-decomposable. In the general case of n variables this is 
hard to verify but a result by Xu and Pearl (1987) is available for 3 variables: A necessary 
and sufficient condition for 3 random variables with a joint normal distribution to be star
decomposable is that the pairwise correlation coefficients satisfy the triangle inequality 

pjk ~ PjiPik with (5) 

for all i, j, k E [1,2,3] and i "I j "I k. Equality holds if node w coincides with node i. For 
the lowest level of the hierarchy, nodes j and k represent parts and node i = w represents 
the common substructure. 

2.2 An Objective Function for Grouping Parts 

The algorithm proposed here is based on "soft" grouping by means of grouping variables ina 
where both the grouping variables and the parameter estimates are updated concurrently. 
The learning algorithms described in (Pearl, 1988) incrementally construct a Bayesian 
network and decisions made at early stages cannot be reversed. It is hoped that the method 
proposed here is more robust with regard to inaccuracies of the estimates. However, if the 
true distribution is not a star-decomposable normal distribution it can only be approximated. 

Let inaij be a binary variable associated with the arc connecting node i and node j; inaij = 
1 if the arc is present in the network (ina is the adjacency matrix of the graph describing the 
structure of the model). The model architecture is restricted to a compositional hierarchy (a 
departure from the more general structure of a Bayesian Network, i.e. nodes are preassigned 
to levels of the hierarchy (see Figure 4)). Based on the condition in equation (5) a cost 
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function term for the grouping variables ina is 

Ep = L inawjinawk (PwjPwk - Pjk)2 
w,j,kt-j 

(6) 

The term penalizes the grouping of two part nodes to the same parent if the term in 
parentheses is large (i and k index part nodes, w nodes at the next higher level in the 
hierarchy) The inawj can be regarded as assignment variables the assign child nodes j to 
parent nodes w. The parameters at each node and the assignment variables ina are estimated 
using an EM algorithm (Dempster, Laird and Rubin, 1977; Utans, 1993; Yuille, Stolorz and 
Utans, 1994). For the details of the implementation of grouping with match networks see 
(Mjolsness et at., 1989; Mjolsness, 1991; Gindi et at., 1991; Utans, 1992; Utans, 1994). 

At each node for each parameter a probability distribution is stored. Nodes at the lowest 
level of the hierarchy represent parts in the input data. For the Gaussian distributions used 
here for all nodes, the parameters are the mean J-t and the variance (J' and can be estimated 
from data. Each part node can potentially be grouped to any substructure at the next 
higher level in the hierarchy. The parameters of the distributions at this level are estimated 
from data as well but using the current value of the grouping variables inaij to weight the 
contribution from each part node. Because each child node j can have only one parent node 
i, an additional constraint for a unique assignment is Lw inawj = 1. 

3 ANEXAMPLE 

Initial simulations of the proposed algorithm were performed using a hierarchial model for 
dot clusters. The training data was generated using the three-level model shown in Figure 5. 
Each node is parameterized by its position (x, y). The node at the top level represents the 
entire dot cluster. At the intermediate level nodes represent subcluster centers. The leaf 
nodes at the lowest level represent individual dots that are output by the model and observed 
in the image. The top level node represents the position of the entire cluster. At each level 
1 + 1 stored offsets d!t 1 are added to the parent coordinates x~ to obtain the coordinates 
of the child nodes. Then, independent, zero-mean Gaussian distributed noise ( is added: 
xj+l = x! + d~jl + ( The training data consists of a vector of positions at the lowest level 
{Xj} with Xj = (Xj, Yj), j = 1 ... 9 for each exemplar. 

The identity of the parts in the training data is assumed known. In addition, the data consists 
of parts from a single object. For the simulations, the model architecture is restricted to a 
three-level hierarchy. Since at the top level a single node represents the entire object, only 
the grouping variables from the lowest to the intermediate level are unknown (the nodes 
at the intermediate level are implicitly grouped to the single node at the top level). In the 
current implementation the parameters of a parent node are defined as the average over the 
parameters of its child nodes: x~ = Jv Lj i~jxj+l 

For this problem the algorithm has recovered the structure of the model that generated the 
training data. Thus in this case it is possible to use the correlation coefficients to learn 
the structure of an object from noisy training exemplars. However, the algorithm does 
not recover the same parameter values x used in the generative model at the intermediate 
layers. These cannot uniquely specified due to the ambiguity between the parameters Xi 

and offsets d ij (a different choice for Xi leads to different values for d ij ). 
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Figure 5: The model used to generated training data. The structure of the model is a three-level 
hierarchy. The model parameters are chosen such that the generated dot cluster spatially overlap. On 
the left, an example of an instance of a dot cluster generated from the model is shown (these constitute 
the training data). 

4 EXTENSIONS 

The results of the initial experiments are encouraging but more research needs to be done 
before the algorithm can be applied to real data. For the example used here, the training 
data was generated by a hierarchical model. Thus the distribution of the training exemplars 
could, in principle, be learned exactly using the proposed model architecture. I plan to 
study the effect of approximating the distribution of real-world data by applying the method 
to the problem of learning models for handwritten digit recognition. 

The model should be extended to include provisions to deal with missing data. Instead of 
being binary variables, inaij could be the conditional probability that part j is present in a 
typical instance of the object given that the parent node i itself is present (similar to the dot 
deletion rule described in (Mjolsness, 1991)}. These probabilities must also be estimated 
from data. Under this interpretation the inaij are similar to the mixture coefficients in the 
mixture of experts model (Jordan and Jacobs, 1993) 

The robustness of the algorithm can be improved when the desired locality of the model is 
explicitly favored via an additional constraint. 

E\ocal = .A L inaij inaik IXj - Xk 12 
ij k 

In this sense, the toy problem shown here is unnecessarily difficult. Preliminary experiments 
indicate that including this term reduces the sensitivity to spurious correlations between 
parts that are far apart. 

As described the algorithm performs unsupervised grouping; learning the hierarchical model 
does not take in to account the recognition performance obtained when using the model. 
While the problem of learning and representing models in a hierarchical form is interesting 
in its own right, the final criteria for judging the model in the context of a recognition 
problem should be recognition performance. The assumption is that the model should pick 
up substructures that are specific to a particular class of objects and maximally discriminate 
between objects belonging to other classes. For example, after a initial model is obtained 
that roughly captures the structure of the training data, it can be refined on-line during the 
recognition stage. 
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