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Abstract 

With a point matching distance measure which is invariant under 
translation, rotation and permutation, we learn 2-D point-set ob­
jects, by clustering noisy point-set images. Unlike traditional clus­
tering methods which use distance measures that operate on feature 
vectors - a representation common to most problem domains - this 
object-based clustering technique employs a distance measure spe­
cific to a type of object within a problem domain. Formulating 
the clustering problem as two nested objective functions, we derive 
optimization dynamics similar to the Expectation-Maximization 
algorithm used in mixture models. 

1 Introduction 

Clustering and related unsupervised learning techniques such as competitive learn­
ing and self-organizing maps have traditionally relied on measures of distance, like 
Euclidean or Mahalanobis distance, which are generic across most problem domains. 
Consequently, when working in complex domains like vision, extensive preprocess­
ing is required to produce feature sets which reflect properties critical to the domain, 
such as invariance to translation and rotation. Not only does such preprocessing 
increase the architectural complexity of these systems but it may fail to preserve 
some properties inherent in the domain. For example in vision, while Fourier de­
composition may be adequate to handle reconstructions invariant under translation 
and rotation, it is unlikely that distortion invariance will be as amenable to this 
technique (von der Malsburg, 1988). 
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These problems may be avoided with the help of more powerful, domain-specific 
distance measures, including some which have been applied successfully to visual 
recognition tasks (Simard, Le Cun, and Denker, 1993; Huttenlocher et ai., 1993). 
Such measures can contain domain critical properties; for example, the distance 
measure used here to cluster 2-D point images is invariant under translation, rota­
tion and labeling permutation. Moreover, new distance measures may constructed, 
as this was, using Bayesian inference on a model of the visual domain given by a 
probabilistic grammar (Mjolsness, 1992). Distortion invariant or graph matching 
measures, so formulated, can then be applied to other domains which may not be 
amenable to description in terms of features. 

Objective functions can describe the distance measures constructed from a proba­
bilistic grammar, as well as learning problems that use them. The clustering prob­
lem in the present paper is formulated as two nested objective functions: the inner 
objective computes the distance measures and the outer objective computes the 
cluster centers and cluster memberships. A clocked objective function is used, with 
separate optimizations occurring in distinct clock phases (Mjolsness and Miranker, 
1993). The optimization is carried out with coordinate ascent/descent and deter­
ministic annealing and the resulting dynamics is a generalization of the Expectation­
Maximization (EM) algorithm commonly used in mixture models. 

2 Theory 

2.1 The Distance Measure 

Our distance measure quantifies the degree of similarity between two unlabeled 
2-D point images, irrespective of their position and orientation. It is calculated 
with an objective that can be used in an image registration problem. Given two 
sets of points {Xj} and {Yk }, one can minimize the following objective to find the 
translation, rotation and permutation which best maps Y onto X : 

Ereg(m, t, 0) = L mjkllXj - t - R(0) . Yk l1 2 

jk 

with constraints: 'Vj L:k mjk = 1 , 'Vk L:j mjk = l. 
Such a registration permits the matching of two sparse feature images in the presence 
of noise (Lu and Mjolsness, 1994). In the above objective, m is a permutation matrix 
which matches one point in one image with a corresponding point in the other image. 
The constraints on m ensure that each point in each image corresponds to one and 
only one point in the other image (though note later remarks regarding fuzziness). 

Then given two sets of points {Xj} and {Yk } the distance between them is defined 
as: 

D({Xj}, {Yk}) = min(Ereg(m,t,0) I constraints on m) . (1) 
m,t,e 

This measure is an example of a more general image distance measure derived in 
(Mjolsness, 1992): 

d(x, y) = mind(x, T(y)) E [0,00) 
T 

where T is a set of transformation parameters introduced by a visual grammar. In 
(1) translation, rotation and permutation are the transformations, however scaling 
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or distortion could also have been included, with consequent changes in the objective 
function. 

The constraints are enforced by applying the Potts glass mean field theory ap­
proximations (Peterson and Soderberg,1989) and then using an equivalent form of 
the resulting objective, which employs Lagrange multipliers and an x log x barrier 
function (as in Yuille and Kosowsky, 1991): 

Ereg(m, t, 8) L: mjkllXj - t - R(8) · YkW + f31 L: mjk(logmjk -1) 
jk jk 

+L:J.tj(L:mjk-1)+L:vk(L:mjk-1). (2) 
j k k j 

In this objective we are looking for a saddle point. (2) is minimized with respect to 
m, t, and 8, which are the correspondence matrix, translation,and rotation, and is 
maximized with respect to J.t and v, the Lagrange multipliers that enforce the row 
and column constraints for m. 

2.2 The Clustering Objective 

The learning problem is formulated as follows: Given a set of I images, {Xd, with 
each image consisting of J points, find a set of A cluster centers {Ya } and match 
variables {Mia} defined as 

M. - {I if Xi is in Ya's cluster 
la - 0 otherwise, 

such that each image is in only one cluster, and the total distance of all the images 
from their respective cluster centers is minimized. To find {Ya} and {Mia} minimize 
the cost function, 

Ec/U8ter(Y, M) = L: MiaD(Xi, Ya) , 
ia 

with the constraint that 'Vi l:a Mia = 1. D(Xi, Ya), the distance function, is 
defined by (1). 

The constraints on M are enforced in a manner similar to that described for the 
distance measure, except that now only the rows of the matrix M need to add to 
one, instead of both the rows and the columns. The Potts glass mean field theory 
method is applied and an equivalent form of the resulting objective is used: 

1 
Ec/u8ter(Y, M) = ~ MiaD(Xi, Ya) + f3 ~ Mia (log Mia - 1) + ~ Ai(L: Mia -1) 

ta za z a 
(3) 

Replacing the distance measure by (2), we derive: 

Ec/u8ter(Y, M, t, 8, m) = L:Mia L: miajkllXij - tia - R(8ia) . Ya k11 2+ 
ia jk 

~[f3~ ~k miajk(logmiajk - 1) + ~ J.tiaj(L:k miajk - 1) + 
za J J 

L:Viak(L:miajk -1)]+ -;- L:Mia(logMia -1)+ L: Ai(L: Mia -1) 
k j M ia i a 
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A saddle point is required. The objective is minimized with respect to Y, M, m, 
t, 0, which are respectively the cluster centers, the cluster membership matrix, the 
correspondence matrices, the rotations, and the translations. It is maximized with 
respect to A, which enforces the row constraint for M, and J..l and v which enforce 
the column and row constraints for m. M is a cluster membership matrix indicating 
for each image i, which cluster a it falls within, and mia is a permutation matrix 
which assigns to each point in cluster center Ya a corresponding point in image Xi. 
0ia gives the rotation between image i and cluster center a. Both M and mare 
fuzzy, so a given image may partially fall within several clusters, with the degree of 
fuzziness depending upon 13m and 13M. 
Therefore, given a set of images, X, we construct Ecltuter and upon finding the 
appropriate saddle point of that objective, we will have Y, their cluster centers, 
and M, their cluster memberships. 

3 The Algorithm 

3.1 Overview - A Clocked Objective Function 

The algorithm to minimize the above objective consists of two loops - an inner 
loop to minimize the distance measure objective (2) and an outer loop to minimize 
the clustering objective (3). Using coordinate descent in the outer loop results 
in dynamics similar to the EM algorithm for clustering (Hathaway, 1986). (The 
EM algorithm has been similarly used in supervised learning [Jordan and Jacobs, 
1993].) All variables occurring in the distance measure objective are held fixed 
during this phase. The inner loop uses coordinate ascent/descent which results in 
repeated row and column projections for m. The minimization of m, t and 0 occurs 
in an incremental fashion, that is their values are saved after each inner loop call 
from within the outer loop and are then used as initial values for the next call to 
the inner loop. This tracking of the values of m, t, and 0 in the inner loop is 
essential to the efficiency of the algorithm since it greatly speeds up each inner loop 
optimization. Each coordinate ascent/descent phase can be computed analytically, 
further speeding up the algorithm. Local minima are avoided, by deterministic 
annealing in both the outer and inner loops. 

The resulting dynamics can be concisely expressed by formulating the objective as 
a clocked objective function, which is optimized over distinct sets of variables in 
phases, 

Ecloc1ced = Ecl'luter( (((J..l, m)A , (v, m)A)$' 0 A, tA)$, (A, M)A, yA)$ 

with this special notation employed recursively: 

E{x, Y)$ : coordinate descent on x, then y, iterated (if necessary) 
x A : use analytic solution for x phase 

The algorithm can be expressed less concisely in English, as follows: 

Initialize t, 0 to zero, Y to random values 
Begin Outer Loop 

Begin Inner Loop 
Initialize t, 0 with previous values 



100 Gold, Mjolsness, and Rangarajan 

Find m, t, e for each ia pair: 
Find m by softmax, projecting across j, then k, iteratively 
Find e by coordinate descent 
Find t by coordinate descent 

End Inner Loop 
If first time through outer loop i 13m and repeat inner loop 
Find M ,Y using fixed values of m, t, e determined in inner loop: 

Find M by soft max, across i 
Find Y by coordinate descent 

i 13M, 13m 
End Outer Loop 

When the distances are calculated for all the X - Y pairs the first time time through 
the outer loop, annealing is needed to minimize the objectives accurately. However 
on each succeeding iteration, since good initial estimates are available for t and e 
(the values from the previous iteration of the outer loop) annealing is unnecessary 
and the minimization is much faster. 

The speed of the above algorithm is increased by not recalculating the X - Y distance 
for a given ia pair when its Mia membership variable drops below a threshold. 

3.2 Inner Loop 

The inner loop proceeds in three phases. In phase one, while t and e are held fixed, 
m is initialized with the softmax function and then iteratively projected across its 
rows and columns until the procedure converges. In phases two and three, t and e 
are updated using coordinate descent. Then 13m is increased and the loop repeats. 

In phase one m is updated with softmax: 

exp( -13m "Xij - tia - R(e ia ) . Yak 112) 

miajk = Lk' exp( -13m IIXij - tia - R(eia) . Yak/112) 

Then m is iteratively normalized across j and k until Ljk t:t.miajk < f : 

miajk 
miajk = =-~-­

'1\'., m· .I k L.JJ ,aJ 

Using coordinate descent e is calculated in phase two: 

And t in phase three: 

Finally 13m is increased and the loop repeats. 
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By setting the partial derivatives of (2) to zero and initializing I-lJ and v2 to zero, 
the algorithm for phase one may be derived. Phases two and three may be derived 
by taking the partial derivative of (2) with respect to 0, setting it to zero, solving 
for 0, and then solving for the fixed point of the vector (tl, t2). 

Beginning with a small 13m allows minimization over a fuzzy correspondence matrix 
m, for which a global minimum is easier to find. Raising 13m drives the m's closer 
to 0 or 1, as the algorithm approaches a saddle point. 

3.3 Outer Loop 

The outer loop also proceeds in three phases: (1) distances are calculated by calling 
the inner loop, (2) M is projected across a using the softmaxfunction, (3) coordinate 
descent is used to update Y . 

Therefore, using softmax M is updated in phase two: 

exp( -13M Ljk miajkllXij - tia - R(0ia) . Yak112) 
Mia = ~----------~------~----------~~~----~7 

La' exp( -13M Ljk mia' jk IIXij - t ia , - R(0ia ,) . Ya, k 112) 

Y, in phase three is calculated using coordinate descent: 

Li Mia Lj miajk( cos 0 ia (Xij 1 - tiad + sin 0ia(Xij2 - tia2)) 

Li Mia Lj miaj k 

Li Mia Lj miajk( - sin 0ia(Xi jl - tiad + cos 0ia(Xij2 - tia2)) 
Yak2 

Li Mia Ej miajk 

Then 13M is increased and the loop repeats. 

4 Methods and Experimental Results 

In two experiments (Figures la and Ib) 16 and 100 randomly generated images of 
15 and 20 points each are clustered into 4 and 10 clusters, respectively. 

A stochastic model, formulated with essentially the same visual grammar used to 
derive the clustering algorithm (Mjolsness, 1992), generated the experimental data. 
That model begins with the cluster centers and then applies probabilistic trans­
formations according to the rules laid out in the grammar to produce the images. 
These transformations are then inverted to recover cluster centers from a starting 
set of images. Therefore, to test the algorithm, the same transformations are ap­
plied to produce a set of images, and then the algorithm is run in order to see if it 
can recover the set of cluster centers, from which the images were produced. 

First, n = 10 points are selected using a uniform distribution across a normalized 
square. For each of the n = 10 points a model prototype (cluster center) is created 
by generating a set of k = 20 points uniformly distributed across a normalized 
square centered at each orginal point. Then, m = 10 new images consisting of 
k = 20 points each are generated from each model prototype by displacing all k 
model points by a random global translation, rotating all k points by a random 
global rotation within a 54° arc, and then adding independent noise to each of the 
translated and rotated points with a Gaussian distribution of variance (1"2. 
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Figure 1: (a): 16 images, 15 points each (b):100 images, 20 points each 

t 

The p = n x m = 100 images so generated is the input to the algorithm. The 
algorithm, which is initially ignorant of cluster membership information, computes 
n = 10 cluster centers as well as n x p = 1000 match variables determining the 
cluster membership of each point image. u is varied and for each u the average 
distance of the computed cluster centers to the theoretical cluster centers (i.e. the 
original n = 10 model prototypes) is plotted. 

Data (Figure 1a) is generated with 20 random seeds with constants of n = 4, k = 
15, m = 4, p = 16, varying u from .02 to .14 by increments of .02 for each seed. 
This produces 80 model prototype-computed cluster center distances for each value 
of u which are then averaged and plotted, along with an error bar representing 
the standard deviation of each set. 15 random seeds (Figure 1 b) with constants 
of n = 10, k = 20, m = 10, p = 100, u varied from .02 to .16 by increments of 
.02 for each seed, produce 150 model prototype-computed cluster center distances 
for each value of u. The straight line plotted on each graph shows the expected 
model prototype-cluster center distances, b = ku / vn, which would be obtained if 
there were no translation or rotation for each generated image, and if the cluster 
memberships were known. It can be considered a lower bound for the reconstruction 
performance of our algorithm. Figures 1a and 1 b together summarize the results of 
280 separate clustering experiments. 

For each set of images the algorithm was run four times, varying the initial randomly 
selected starting cluster centers each time and then selecting the run with the lowest 
energy for the results. The annealing rate for 13M and 13m was a constant factor of 
1.031. Each run of the algorithm averaged ten minutes on an Indigo SGI workstation 
for the 16 image test, and four hours for the 100 image test. The running time of 
the algorithm is O(pnk2). Parallelization, as well as hierarchical and attentional 
mechanisms, all currently under investigation, can reduce these times. 

5 Summary 

By incorporating a domain-specific distance measure instead of the typical generic 
distance measures, the new method of unsupervised learning substantially reduces 
the amount of ad-hoc pre-processing required in conventional techniques. Critical 
features of a domain (such as invariance under translation, rotation, and permu-
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tation) are captured within the clustering procedure, rather than reflected in the 
properties of feature sets created prior to clustering. The distance measure and 
learning problem are formally described as nested objective functions. We derive 
an efficient algorithm by using optimization techniques that allow us to divide up 
the objective function into parts which may be minimized in distinct phases. The 
algorithm has accurately recreated 10 prototypes from a randomly generated sample 
database of 100 images consisting of 20 points each in 120 experiments. Finally, by 
incorporating permutation invariance in our distance measure, we have a technique 
that we may be able to apply to the clustering of graphs. Our goal is to develop 
measures which will enable the learning of objects with shape or structure. 
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