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ABSTRACT 

Motivated by mathematical modeling, analog implementation and 
distributed simulation of neural networks, we present a definition of 
asynchronous dynamics of general CT dynamical systems defined 
by ordinary differential equations, based on notions of local times 
and communication times. We provide some preliminary results 
on globally asymptotical convergence of asynchronous dynamics 
for contractive and monotone CT dynamical systems. When ap
plying the results to neural networks, we obtain some conditions 
that ensure additive-type neural networks to be asynchronizable. 

1 INTRODUCTION 

Neural networks are massively distributed computing systems. A major issue in par
allel and distributed computation is synchronization versus asynchronization (Bert
sekas and Tsitsiklis, 1989). To fix our idea, we consider a much studied additive-type 
model (Cohen and Grossberg, 1983; Hopfield, 1984; Hirsch, 1989) of a continuous
time (CT) neural network of n neurons, whose dynamics is governed by 

n 

Xi(t) = -ajXi(t) + L WijO'j (Jlj Xj (t)) + Ii, i = 1,2, ... , n, 
j=1 

(1) 
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with neuron states Xi (t) at time t, constant decay rates ai, external inputs h, gains 
JJj, neuron activation functions Uj and synaptic connection weights Wij. Simu
lation and implementation of idealized models of neural networks such as (1) on 
centralized computers not only limit the size of networks, but more importantly 
preclude exploiting the inherent massive parallelism in network computations. A 
truly faithful analog implementation or simulation of neural networks defined by 
(1) over a distributed network requires that neurons follow a global clock t, com
municate timed states Xj(t) to all others instantaneously and synchronize global 
dynamics precisely all the time (e.g., the same Xj(t) should be used in evolution of 
all Xi(t) at time t). Clearly, hardware and software realities make it very hard and 
sometimes impossible to fulfill these requirements; any mechanism used to enforce 
such synchronization may have an important effect on performance of the net
work. Moreover, absolutely insisting on synchronization contradicts the biological 
manifestation of inherent asynchrony caused by delays in nerve signal propagation, 
variability of neuron parameters such as refractory periods and adaptive neuron 
gains. On the other hand, introduction of asynchrony may change network dynam
ics, for example, from convergent to oscillatory. Therefore, validity of asynchronous 
dynamics of neural networks must be assessed in order to ensure desirable dynamics 
in a distributed environment. 

Motivated by the above issues, we study asynchronous dynamics of general CT dy
namical systems with neural networks in particular. Asynchronous dynamics has 
been thoroughly studied in the context of iterative maps or discrete-time (DT) dy
namical systems; see, e.g., (Bertsekas and Tsitsiklis, 1989) and references therein. 
Among other results are that P-contractive maps on Rn (Baudet, 1978) and contin
uous maps on partially ordered sets (Wang and Parker, 1992) are asynchronizable, 
i.e., any asynchronous iterations of these maps will converge to the fixed points 
under synchronous (or parallel) iterations. The synchronization issue has also been 
addressed in the context of neural networks. In fact, the celebrated DT Hopfield 
model (Hopfield, 1982) adopts a special kind of asynchronous dynamics: only one 
randomly chosen neuron is allowed to update its state at each iterative step. The 
issue is also studied in (Barhen and Gulati, 1989) for CT neural networks. The 
approach there is, however, to convert the additive model (1) into a DT version 
through the Euler discretization and then to apply the existing result for contrac
tive mappings in (Baudet, 1978) to ensure the discretized system to be asynchro
nizable. Overall, studies for asynchronous dynamics of CT dynamical systems are 
still lacking; there are even no reasonable definitions for what it means, at least to 
our knowledge. 

In this paper, we continue our studies on relationships between CT and DT dy
namical systems and neural networks (Wang and Blum, 1992; Wang, Blum and Li, 
1993) and concentrate on their asynchronous dynamics. We first extend a concept 
of asynchronous dynamics of DT systems to CT systems, by identifying the distinc
tion between synchronous and asynchronous dynamics as (i) presence or absence of 
a common global clock used to synchronize the dynamics of the different neurons 
and (ii) exclusion or inclusion of delay times in communication between neurons, 
and present some preliminary results for asynchronous dynamics of contractive and 
monotone CT systems. 
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2 MATHEMATICAL FORMULATION 

To be general, we consider a CT dynamical system defined by an n-dimensional 
system of ordinary differential equations, 

(2) 

where Ii : Rn --+ R are continuously differentiable and x(t) E Rn for all t in R+ (the 
set of all nonnegative real numbers). In contrast to the asynchronous dynamics 
given below, dynamics of this system will be called synchronous. An asynchronous 
scheme consists of two families of functions Ci : R+ --+ R+ and rj : R+ --+ R+, 
i, j = 1, ... , n, satisfying the following constraints: for any t > 0, 

(i) Initiation: Ci(t) ~ 0 and rJ(t) ~ 0; 

(ii) Non-starvation: Ci'S are differentiable and l\(t) > 0; 

(iii) Liveness: limt_oo Ci(t) = 00 and limt_oo rJ(t) = 00; 

(iv) Accessibility: rj(t) ~ Cj(t). 

Given an asynchronous scheme ({cd, {rJ}), the associated asynchronous dynamics 
of the system (2) is the solution of the following parametrized system: 

(3) 

We shall call this system an asynchronized system of the original one (2). 

The functions Ci(t) should be viewed as respective "local" times (or clocks) of com
ponents i, as compared to the "global" time (or clock) t. As each component i 
evolves its state according to its local time Ci(t), no shared global time t is needed 
explicitly; t only occurs implicitly. The functions rj(t) should be considered as time 
instants at which corresponding values Xi of components j are used by component 
i; hence the differences (ci(t) - rj(t» ~ 0 can be interprated as delay times in 
communication between the components j and i. Constraint (i) reflects the fact 
that we are interested in the system dynamics after some global time instance, say 
0; constraint (ii) states that the functions Ci are monotone increasing and hence the 
local times evolve only forward; constraint (iii) characterizes the live ness property 
of the components and communication channels between components; and, finally, 
constraint (iv) precludes the possibility that component i accesses states x j ahead 
of the local times Cj(t) of components j which have not yet been generated. 

Notice that, under the assumption on monotonicity of Ci(t), the inverses C;l(t) exist 
and the asynchronized system (3) can be transformed into 

(4) 

by letting Yi(t) = Xi( Ci(t» and y} (t) = Xj (rJ(t» = Yj (c;l (rJ(t» for i, j = 1,2, ... , n. 
The vector form of (4) can be given by 

iJ = Cf F[Y] (5) 
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where yet) = [Yl (t), "" Yn(t)]T, C' = diag(dcl (t)/dt, "" dcn(t)/dt) , F = [/1, "" fn]T, 
y = [Y;] and 

[ 
/1 cYi(t) , yHt), "" y~(t)) 1 

_ hcYr(t), y~(t), "" y~(t)) 
F[Y] = , ' 

fn (i/'l (t), y~(t), "" y~(t)) 

Notice that the complication in the way F applies to Y ~imply means ,that every 
component i will use possibly different "global" states [Yi(t) , y2(t) , "" y~(t)] , This 
peculiarity makes the equation (5) fit into none ofthe categories of general functional 
differential equations (Hale, 1977), However, if rJ(t) for i = 1, "., n are equal, 
all the components will use a same global state y = [yHt) , y~(t), .. " y~(t)] and 
the asynchronized system (5) assumes a form of retarded functional differential 
equations, 

iJ = c' FcY), (6) 

We shall call this case uniformly-delayed, which will be a main consideration in the 
next section where we discuss asynchronizable systems, 

The system (5) includes some special cases. In a no communication delay situation, 
rj(t) = Cj(t) for all i and the system (5) reduces to iJ = C' F(y), This includes the 
simplest case where the local times Ci(t) are taken as constant-time scalings cit of 
the global time t; specially, when all Ci(t) = t the system goes back to the original 
one (2), If, on the other hand, all the local time~ are identi~al to the global time t 
and the communication times take the form of rJ(t) = t - OJ(t) one obtains a most 
general delayed system 

(7) 

where the state Yj(t) of component j may have different delay times O)(t) for dif
ferent other components i. 

Finally, we should point out that the above definitions of asynchronous schemes and 
dynamics are analogues of their counterparts for DT dynamical systems (Bertsekas 
and Tsitsiklis, 1989; Blum, 1990), Usually, an asynchronous scheme for a DT 
system defined by a map f : X -+ X, where X = Xl X X2 X '" X X n , consists of a 
family {Ti ~ N I i = 1, , .. , n} of subset~ of discrete times (N) at which components 
i update their states and a family {rJ : N -+ N I i = 1,2"", n} of communication 
times, Asynchronous dynamics (or chaotic iteration, relaxation) is then given by 

X.(t + 1) = { fi(xl(rt(t)), "', xn(r~(t))) if t E ~ 
I Xi(t) otherwise. 

Notice that the sets Ti can be interpreted as local times of components i . In fact, 
one can define local time functions Ci : N -+ N as Ci(O) = 0 and Ci(t + 1) = Ci(t) + 1 
if t E 11 and Ci(t) otherwise. The asynchronous dynamics can then be defined by 

Xi(t + 1) - Xi(t) = (Ci(t + 1) - ci(t))(fi(xl(rf(t)), ... ,Xn(r~(t))) - Xi(t)), 

which is analogous to the definition given in (4). 
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3 ASYNCHRONIZABLE SYSTEMS 

In general, we consider a CT dynamical system as asynchronizable ifits synchronous 
dynamics (limit sets and their asymptotic stability) persists for some set of asyn
chronous schemes. In many cases, asynchronous dynamics of an arbitrary CT sys
tem will be different from its synchronous dynamics, especially when delay times 
in communication are present. An example can be given for the network (1) with 
symmetric matrix W. It is well-known that (synchronous) dynamics of such net
works is quasi-convergent, namely, all trajectories approach a set of fixed points 
(Hirsch, 1989). But when delay times are taken into consideration, the networks 
may have sustained oscillation when the delays exceed some threshold (Marcus and 
Westervelt, 1989). A more careful analysis on oscillation induced by delays is given 
in (Wu, 1993) for the networks with symmetric circulant weight matrices. 

Here, we focus on asynchronizable systems. We consider CT dynamical systems on 
Rn of the following general form 

Ax(t) = -x(t) + F(x(t» (8) 

where x(t) ERn, A = diag(a1,a2, ... ,an) with aj > 0 and F = [Ji] E G1(Rn). It 
is easy to see that a point x E Rn is a fixed point of (8) if and only if x is a fixed 
point of the map F. Without loss of generality, we assume that 0 is a fixed point 
of the map F. According to (5), the asynchronized version of (8) for an arbitrary 
asynchronous scheme ({ cd, { rj}) is 

Ay = G'( -y + F[Y]), 

where jj = (jjtct), jj~(t), ... , y~(t)]. 

3.1 Contractive Systems 

(9) 

Our first effort attempts to obtain a result similar to the one for P-contractive 
maps in (Baudet, 1978). We call the system (8) strongly P-contractive if there is a 
symmetric and invertible matrix S such that IS- 1 F(Sx)1 < Ixl for all x E Rn and 
IS- 1 F(Sx)1 = Ixl only for x = 0; here Ixl denotes the vector with components Ixil 
and < is component-wise. 

Theorem 1 If the system (8) is strongly P-contractive, then it is asynchronizable 
for any asynchronous schemes without self time delays (i. e., rf (t) = Ci(t) for all 
i=1,2, ... ,n). 

Proof. It is not hard to see that synchronous dynamics of a strongly P-contractive 
system is globally convergent to the fixed point O. Now, consider the transformation 
z = A- 1 y and the system for z 

Ai = G'( -z + S-1 F[SZ]) = G'( -z + G[Z]), 

where G[Z] = S-1 FS[Z]. This system has the same type of dynamics as (9). 
Define a function E : R+ x Rn --+ R+ by E(t) = z T (t)Az(t)j2, whose derivative 
with respect to t is 

E = z T G' (-z + G(Z» < IIG'II (-z T z + IzlT IG(Z)!) < IIG'II( -z T z + IzlT Izl) ::; O. 
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Hence E is an energy function and the asynchronous dynamics converges to the 
fixed point O. 0 

Our second result is for asynchronous dynamics of contractive systems with no 
communication delay. The system (8) is called contractive if there is a real constant 
o ~ a < 1 such that 

IIF(x) - F(y)1I ~ allz - yll 
for all x, y E Rn; here II . II denotes the usual Euclidean norm on Rn. 

Theorem 2 If the system (8) is contractive, then it is asynchronizable for asyn
chronous schemes with no communication delay. 

Proof. The synchronous dynamics of contractive systems is known to be globally 
convergent to a unique fixed point (Kelly, 1990). For an asynchronous scheme with 
no communication delay, the system (8) is simplified to Ali = G'( -y + F(y». We 
consider again the function E = y T Ay/2, which is an energy function as shown 
below. 

E = Y T G' (-y + F(y» ~ IIG/II( -lIyll2 + lIyIlIlF(y)ID < O. 

Therefore, the asynchronous dynamics converges to the fixed point O. 

For the additive-type neural networks (1), we have 

o 

Corollary 1 Let the network (1) have neuron activation functions Ui of sigmoidal 
type with 0 < uHz) ~ SUPzER ui(z) = 1. If it satisfies the condition 

(10) 

where M = diag(J-ll, ... , J-ln), then it is asynchronizable for any asynchronous 
schemes with no communication delay. 

Proof. The condition (10) ensures the map F(x) = A-I Wu(M x) + A- 1 I to be 
contractive. 0 

Notice that the condition (10) is equivalent to many existing ones on globally asymp
totical stability based on various norms of matrix W, especially the contraction con
dition given in (Kelly, 1990) and some very recent ones in (Matsuoka, 1992). The 
condition (10) is also related very closely to the condition in (Barhen and Gulati, 
1989) for asynchronous dynamics of a discretized version of (1) and the condition 
in (Marcus and Westervelt, 1989) for the networks with delay. 

We should emphasize that the results in Theorem 2 and Corollary 1 do not directly 
follow from the result in (Kelly, 1990); this is because local times Ci(t) are allowed 
to be much more general functions than linear ones Ci t. 

3.2 Monotone Systems 

A binary relation ~ on Rn is called a partial order if it satisfies that, for all x, y, z E 
Rn, (i) x ~ x; (ii) x ~ y and y ~ x imply x = y; and (iii) x -< y and y -< z 
imply x -< z. For a partial order ~ on Rn, define ~ on Rn by x ~ y iff x < y 
and Xi # Yi for all i = 1, .. " n. A map F : Rn -I- Rn is monotone if x ~ y implies 
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F(x) -< F(y). A CT dynamical system of the form (2) is monotone if Xl ~ X2 implies 
the trajectories Xl(t), X2(t) with Xl(O) = Xl and X2(0) = X2 satisfy Xl(t) ::5 X2(t) 
for all t ~ 0 (Hirsch, 1988). 

Theorem 3 If the map F in (8) is monotone, then the system (8) is asynchroniz
able for uniformly-delayed asynchronous schemes, provided that all orbits x(t) have 
compact orbit closure and there is a to > 0 with x(to) ~ x(O) or x(to) ~ x(O). 

Proof. This is an application of a Henry's theorem (see Hirsch, 1988) that im
plies that the asynchronized system (9) in the no communication delay situation 
is monotone and Hirsch's theorem (Hirsch, 1988) that guarantees the asymptotic 
convergence of monotone systems to fixed points. 0 

Corollary 2 If the additive-type neural network (1) with sigmoidal activation func
tions is cooperative (i.e., Wij > 0 for i # j (Hirsch, 1988 and 1989)), then it is 
asynchronizable for uniformly-delayed asynchronous schemes, provided that there is 
a to > 0 with x(to) ~ x(O) or x(to) ~ x(O). 

Proof. According to (Hirsch, 1988), cooperative systems are monotone. As the 
network has only bounded dynamics, the result follows from the above theorem. 0 

4 CONCLUSION 

By incorporating the concepts of local times and communication times, we have 
provided a mathematical formulation of asynchronous dynamics of continuous-time 
dynamical systems. Asynchronized systems in the most general form haven't been 
studied in theories of dynamical systems and functional differential equations. For 
contractive and monotone systems, we have shown that for some asynchronous 
schemes, the systems are asynchronizable, namely, their asynchronizations preserve 
convergent dynamics of the original (synchronous) systems. When applying these 
results to the additive-type neural networks, we have obtained some special condi
tions for the networks to be asynchronizable. 

We are currently investigating more general results for asynchronizable dynamical 
systems, with a main interest in oscillatory dynamics. 
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