
Neural Network Exploration Using
Optimal Experiment Design

David A. Cohn
Dept. of Brain and Cognitive Sciences

Massachusetts Inst. of Technology
Cambridge, MA 02139

Abstract

Consider the problem of learning input/output mappings through
exploration, e.g. learning the kinematics or dynamics of a robotic
manipulator. If actions are expensive and computation is cheap,
then we should explore by selecting a trajectory through the in
put space which gives us the most amount of information in the
fewest number of steps. I discuss how results from the field of opti
mal experiment design may be used to guide such exploration, and
demonstrate its use on a simple kinematics problem.

1 Introduction

Most machine learning research treats the learner as a passive receptacle for data
to be processed. This approach ignores the fact that, in many situations, a learner
is able, and sometimes required, to act on its environment to gather data.

Learning control inherently involves being active; the controller must act in order
to learn the result of its action. When training a neural network to control a
robotic arm, one may explore by allowing the controller to "flail" for a length of
time, moving the arm at random through coordinate space while it builds up data
from which to build a model [Kuperstein, 1988]. This is not feasible, however, if
actions are expensive and must be conserved. In these situations, we should choose
a training trajectory that will get the most information out of a limited number of
steps. Manually designing such trajectories is a slow process, and intuitively "good"
trajectories often fail to sufficiently explore the state space [Armstrong, 1989]. In

679

680 Cohn

this paper I discuss another alternative for exploration: automatic, incremental
generation of training trajectories using results from "optimal experiment design."

The study of optimal experiment design (OED) [Fedorov, 1972] is concerned with
the design of experiments that are expected to minimize variances of a parameter
ized model. Viewing actions as experiments that move us through the state space,
we can use the techniques of OED to design training trajectories.

The intent of optimal experiment design is usually to maximize confidence in a
given model, minimize parameter variances for system identification, or minimize
the model's output variance. Armstrong [1989] used a form of OED to identify link
masses and inertial moments of a robot arm, and found that automatically gener
ated training trajectories provided a significant improvement over human-designed
trajectories. Automatic exploration strategies have been tried for neural networks
(e.g. [Thrun and Moller, 1992]' [Moore, 1994]), but use of OED in the neural net
work community has been limited. Plutowski and White [1993] successfully used it
to filter a data set for maximally informative points, but its application to selecting
new data has only been proposed [MacKay, 1992], not demonstrated.

The following section gives a brief description of the relevant results from optimal
experiment design. Section 3 describes how these results may be adapted to guide
neural network exploration and Section 4 presents experimental results of imple
menting this adaptation. Finally, Section 5 discusses implications of the results,
and logical extensions of the current experiments.

2 Optimal experiment design

Optimal experiment design draws heavily on the technique of Maximum Likelihood
Estimation (MLE) [Thisted, 1988]. Given a set of assumptions about the learner's
architecture and sources of noise in the output, MLE provides a statistical basis for
learning. Although the specific MLE techniques we use hold exactly only for linear
models, making certain computational approximations allows them to be used with
nonlinear systems such as neural networks.

We begin with a training set of input-output pairs (Xi, Yi)i=l and a learner fw O·
We define fw(x) to be the learner's output given input X and weight vector w.
Under an assumption of additive Gaussian noise, the maximum likelihood estimate
for the weight vector, W, is that which minimizes the sum squared error Esse =
2:7=1(JW(Xi) - Yi)2. The estimate W gives us an estimate of the output at a novel
input: if = fw(x) (see e.g. Figure 1a).

MLE allows us to compute the variances of our weight and output estimates. Writ
ing the output sensitivity asgw(x) = 8fw(x)/8w, the covariances of ware

where the last approximation assumes local linearity of gw(x). (For brevity, the
output sensitivity will be abbreviated to g(x) in the rest of the paper.)

Neural Network Exploration Using Optimal Experiment Design 681

y

Figure 1: a) A set of training examples for a classification problem, and the net
work's best fit to the data. b) Maximum likelihood estimate of the network's output
variance for the same problem.

For a given reference input X r , the estimated output variance is

var(xr) = g(Xr? A- 1g(xr). (1)

Output variance corresponds to the model's estimate of the expected squared dis
tance between its output fw(x) and the unknown "true" output y. Output variance
then, corresponds to the model's estimate of its mean squared error (MSE) (see Fig
ure 1 b). If the estimates are accurate then minimizing the output variance would
correspond to minimizing the network's MSE.

In optimal experiment design, we estimate how adding a new training example is
expected to change the computed variances. Given a novel X n +1, we can use OED
to predict the effect of adding Xn+1 and its as-yet-unknown Yn+1 to the training
set. We make the assumption that

-1 (T)-1 An+1 ~ An + g(xn+dg(xn+d ,

which corresponds to assuming that our current model is already fairly good. Based
on this assumption, the new parameter variances will be

A~~1 = A~l - A~1g(xn+d(1 + g(Xn+1? A~1g(xn+d)g(xn+t)T A~1.

Combined with Equation 1, this predicts that if we take a new example at X n +1,
the change in output variance at reference input Xr will be

~var(Xr) (g(xrf A~lg(xn+l»2(1 + g(Xn+1)T A;;lg(xn+d)

cov(xr, Xn+l)2(1 + var(xn+d) (2)

To minimize the expected value of var(xr), we should select Xn+l so as to maximize
the right side of Equation 2. For other interesting OED measures, see MacKay
[1992] .

682 Cohn

3 Adapting OED to Exploration

When building a world model, the learner is trying to build a mapping, e.g. from
joint angles to cartesian coordinates (or from state-action pairs to next states). If
it is allowed to select arbitrary joint angles (inputs) in successive time steps, then
the problem is one of selecting the next "query" to make ([Cohn, 1990], [Baum and
Lang, 1991]). In exploration, however, one's choices for a next input are constrained
by the current input. We cannot instantaneously "teleport" to remote parts of the
state space, but must choose among inputs that are available in the next time step.

One approach to selecting a next input is to use selective sampling: evaluate a num
ber of possible random inputs, choose the one with the highest expected gain. In a
high-dimensional action space, this is inefficient. The approach followed here is that
of gradient search, differentiating Equation 2 and hillclimbing on 8jj,var(x r)/ 8Xn +l.

Note that Equation 2 gives the expected change in variance only at a single point
X r , while we wish to minimize the average variance over the entire domain. Ex
plicitly integrating over the domain is intractable, so we must make do with an
approximation. MacKay [1992] proposed using a fixed set of reference points and
measuring the expected change in variance over them. This produces spurious lo
cal maxima at the reference points, and has the undesirable effect of arbitrarily
quantizing the input space. Our approach is to iteratively draw reference points at
random (either uniformly or according to a distribution of interest), and compute
a stochastic approximation of jj, var.

By climbing the stochastically approximated gradient, either to convergence or to
the horizon of available next inputs, we will settle on an input/action with a (locally)
optimal decrease in expected variance.

4 Experimental Results

In this section, I describe two sets of experiments. The first attempts to confirm
that the gains predicted by optimal experiment design may actually be realized in
practice, and the second studies the application of OED to a simple learning task.

4.1 Expected versus actual gain

It must be emphasized that the gains predicted by OED are expected gains. These
expectations are based on the relatively strong assumptions of MLE, which may
not strictly hold. In order for the expected gains to materialize, two "bridges" must
be crossed. First, the expected decrease in model variance must be realized as an
actual decrease in variance. Second, the actual decrease in model variance must
translate into an actual decrease in model MSE.

4.1.1 Expected decreases in variance --+ actual decreases in variance

The translation from expected to actual changes in variance requires coordination
between the exploration strategy and the learning algorithm: to predict how the
variance of a weight will change with a new piece of data, the predictor must know
how the weight itself (and its neighboring weights) will change. Using a black

~
~

>
~ ...
~
'tl

Neural Network Exploration Using Optimal Experiment Design 683

0 . 012

l
I

0.01

0 . 008

0 .00 6

0 . 0 0 4

0 . 002

XX
x

, ,

x
x

- - - - - a ctual =e xpec ted

x

x
x

0 . 0 0 2 0. 00 4 0 . 0 0 6 0 . 0 08 0 . 0 1 0 . 01 2

exp ec t e d d e lta var

2 .8

2 . 4

""; ,
;::
~

1. 6
[oJ
Vl
:E

" ... 1. 2

~
'tl

0.8

0 . 4

- 0. 4

x x x

;If x
x

)(x X x
x

x
i« x

x

x x

0 .002 0.004 0.00 6 0 .008 0 . 01 0 . 012

actua l d e lta var

Figure 2: a) Correlations between expected change in output variance and actual
change output variance b) Correlations between actual change in output variance
and change in mean squared error. Correlations are plotted for a network trained
on 50 examples from the arm kinematics task.

box routine like backpropagation to update the weights virtually guarantees that
there will be some mismatch between expected and actual decreases in variance.
Experiments indicate that, in spite of this, the correlation between predicted and
actual changes in variance are relatively good (Figure 2a) .

4.1.2 Decreases in variance -- decreases in MSE

A more troubling translation is the one from model variance to model correctness.
Given the highly nonlinear nature of a neural network, local minima may leave us
in situations where the model is very confident but entirely wrong. Due to high
confidence, the learner may reject actions that would reduce its mean squared error
and explore areas where the model is correct, but has low confidence. Evidence
of this behavior is seen in the lower right corner of Figure 2b, where some actions
which produce a large decrease in variance have little effect on the network's MSE.
While this decreases the utility of OED, it is not crippling. We discuss one possible
solution to this problem at the end of this paper .

4.2 Learning kinematics

We have used the the stochastic approximation of ~var to guide exploration on
several simple tasks involving classification and regression. Below , I detail the
experiments involving exploration of the kinematics of a simple two-dimensional,
two-joint arm . The task was to learn a forward model 8 1 x 8 2 -- X X Y through
exploration, which could then be used to build a controller following Jordan [1992].

684 Cohn

The model was to be learned by a feedforward network with a sigmoid transfer
function using a single hidden layer of 8 or 20 hidden units.

Figure 3: Learning 2D arm kinematics with 8 hidden units. a) Geometry of the 2D,
two-joint arm. b) Sample trajectory using OED-based greedy exploration.

On each time step, the learner was allowed to select inputs 8 1 and 8 2 and was then
given tip position x and y to incorporate into its training set. It then hillclimbed
to find the next 8 1 and 8 2 within its limits of movement that would maximize the
stochastic approximation of ~var . On each time step 8 1 and 8 2 were limited to
change by no more than ±36° and ±18° respectively. Simulations were performed on
the Xerion simulator (made available by the University of Toronto), approximating
the variance gradient on each step with 100 randomly drawn points. A sample tip
trajectory is illustrated in Figure 3b.

We compared the performance of this one-step optimal (greedy) learner, in terms
of mean squared error, with that of an identical learner which explored randomly
by "flailing." Not surprisingly, the improvement of greedy exploration over random
exploration is significant (Figure 4b). The asymptotic performance of the greedy
learner was better than that of the random learner, and it reached its asymptote in
much few steps.

5 Discussion

The experiments described in this paper indicate that optimal experiment design
is a promising tool for guiding neural network exploration. It requires no arbi
trary discretization of state or action spaces, and is amenable to gradient search
techniques. It does, however, have high computational costs and, as discussed in
Section 4.1.2, may be led astray if the model settles in a local minimum.

5.1 Alternatives to greedy OED

The greedy approach is prone to "boxing itself into a corner" while leaving important
parts of the domain unexplored. One heuristic for avoiding local minima is to

Neural Network Exploration Using Optimal Experiment Design 685

I

~\ O. 28 ~
I

0.24 - I I
I +

w o. 201 ~

\

Ul

0 . 16V :0:

0.12-1
I
I

0 . 08i

0 .0 4J
I

~ 0.00 , .. _ --T n e

: : ::~
0.21~ \\

I . \

O. 18~ \

~ 0 . 15~ \

. ::: \(
0 . 061
O. 0 3~

I ~~-=::::-./
o . 001-----,-, , -,---,-, I , ,

20 40 60 80 100 120 o 20 40 60 80 100120140160180200

Number of steps Number of steps

Figure 4: Learning 2D arm kinematics. a) MSE for a single exploration trajectory
(20 hidden units). b) Plot of MSE for random and greedy exploration vs. number
of training examples, averaged over 12 runs (8 hidden units).

occasionally check the expected gain in other parts of the input space and move
towards them if they promise much greater gain than a greedy step.

The theoretically correct but computationally expensive approach is to optimize
over an entire trajectory. Trajectory optimization entails starting with an initial
trajectory, computing the expected gain over it, and iteratively perturbing points on
the trajectory towards towards optimal expected gain (subject to other points along
the trajectory being explored). Experiments are currently underway to determine
how much of an improvement may be realized with trajectory optimization; it is
unclear whether the improvement over the greedy approach will be worth the added
computational cost.

5.2 Computational Costs

The computational costs of even greedy OED are great . Selecting a next action
requires computation and inversion of the hessian {)2 Eue/ ow 2 . Each time an action
is selected and taken, the new data must be incorporated into the training set,
and the learner retrained . In comparison, when using a flailing strategy or a fixed
trajectory, the data may be gathered with little computation, and the learner trained
only once on the batch. In this light, the cost of data must be much greater than
the cost of computation for optimal experiment design to be a preferable strategy.

There are many approximations one can make which significantly bring down the
cost of OED. By only considering covariances of weights leading to the same neuron,
the hessian may be reduced to a block diagonal form, with each neuron computing
its own (simpler) covariances in parallel. As an extreme, one can do away with
covariances entirely and rely only on individual weight variances, whose computa
tion is simple. By the same token, one can incorporate the new examples in small
batches, only retraining every 5 or so steps. While suboptimal from a data gather
ing perspective, they appear to still outperform random exploration, and are much
cheaper than "full-blown" optimization.

686 Cohn

5.3 Alternative architectures

We may be able to bring down computational costs and improve performance by
using a different architecture for the learner. With a standard feedforward neural
network, not only is the repeated compution of variances expensive, it sometimes
fails to yield estimates suitable for use as confidence intervals (as we saw in Sec
tion 4.1.2). A solution to both of these problems may lie in selection of a more
amenable architecture and learning algorithm. One such architecture, in which
output variances have a direct role in estimation, is a mixture of Gaussians, which
may be efficiently trained using an EM algorithm [Ghahramani and Jordan, 1994].
We expect that it is along these lines that our future research will be most fruitful.

Acknowledgements

I am indebted to Michael I. Jordan and David J .C. MacKay for their help in making
this research possible. This work was funded by ATR Human Information Process
ing Laboratories, Siemens Corporate Research and NSF grant CDA-9309300.

Bibliography

B. Armstrong. (1989) On finding exciting trajectories for identification experiments.
Int. J. of Robotics Research, 8(6):28-48.

E. Baum and K. Lang. (1991) Constructing hidden units using examples and
queries. In R . Lippmann et al., eds., Advances in Neural Information Processing
Systems 3, Morgan Kaufmann, San Francisco, CA.

D. Cohn, L. Atlas and R. Ladner. (1990) Training connectionist networks with
queries and selective sampling. In D. Touretzky, editor, Advances in Neural Infor
mation Processing Systems 2, Morgan Kaufmann, San Francisco.

V. Fedorov. (1972) Theory of Optimal Experiments. Academic Press, New York.

Z. Ghahramani and M. Jordan. (1994) Supervised learning from incomplete data
via an EM approach. In this volume.

M. Jordan and D. Rumelhart. (1992) Forward models: Supervised learning with a
distal teacher. Cognitive Science, 16(3):307-354.

D. MacKay. (1992) Information-based objective functions for active data selection,
Neural Computation 4(4): 590-604.

A. Moore. (1994) The parti-game algorithm for variable resolution reinforcement
learning in multidimensional state-spaces. In this volume.

M. Plutowski and H. White. (1993) Selecting concise training sets from clean data.
IEEE Trans. on Neural Networks, 4(2):305-318.

R. Thisted. (1988) Elements of Statistical Computing. Chapman and Hall, NY.

S. Thrun and K. Moller. (1992) Active Exploration in Dynamic Environments. In
J. Moody et aI., editors, Advances in Neural Information Processing Systems 4.
Morgan Kaufmann, San Francisco, CA.

