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Abstract 

Consider the problem of learning input/output mappings through 
exploration, e.g. learning the kinematics or dynamics of a robotic 
manipulator. If actions are expensive and computation is cheap, 
then we should explore by selecting a trajectory through the in
put space which gives us the most amount of information in the 
fewest number of steps. I discuss how results from the field of opti
mal experiment design may be used to guide such exploration, and 
demonstrate its use on a simple kinematics problem. 

1 Introduction 

Most machine learning research treats the learner as a passive receptacle for data 
to be processed. This approach ignores the fact that, in many situations, a learner 
is able, and sometimes required, to act on its environment to gather data. 

Learning control inherently involves being active; the controller must act in order 
to learn the result of its action. When training a neural network to control a 
robotic arm, one may explore by allowing the controller to "flail" for a length of 
time, moving the arm at random through coordinate space while it builds up data 
from which to build a model [Kuperstein, 1988]. This is not feasible, however, if 
actions are expensive and must be conserved. In these situations, we should choose 
a training trajectory that will get the most information out of a limited number of 
steps. Manually designing such trajectories is a slow process, and intuitively "good" 
trajectories often fail to sufficiently explore the state space [Armstrong, 1989]. In 
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this paper I discuss another alternative for exploration: automatic, incremental 
generation of training trajectories using results from "optimal experiment design." 

The study of optimal experiment design (OED) [Fedorov, 1972] is concerned with 
the design of experiments that are expected to minimize variances of a parameter
ized model. Viewing actions as experiments that move us through the state space, 
we can use the techniques of OED to design training trajectories. 

The intent of optimal experiment design is usually to maximize confidence in a 
given model, minimize parameter variances for system identification, or minimize 
the model's output variance. Armstrong [1989] used a form of OED to identify link 
masses and inertial moments of a robot arm, and found that automatically gener
ated training trajectories provided a significant improvement over human-designed 
trajectories. Automatic exploration strategies have been tried for neural networks 
(e.g. [Thrun and Moller, 1992]' [Moore, 1994]), but use of OED in the neural net
work community has been limited. Plutowski and White [1993] successfully used it 
to filter a data set for maximally informative points, but its application to selecting 
new data has only been proposed [MacKay, 1992], not demonstrated. 

The following section gives a brief description of the relevant results from optimal 
experiment design. Section 3 describes how these results may be adapted to guide 
neural network exploration and Section 4 presents experimental results of imple
menting this adaptation. Finally, Section 5 discusses implications of the results, 
and logical extensions of the current experiments. 

2 Optimal experiment design 

Optimal experiment design draws heavily on the technique of Maximum Likelihood 
Estimation (MLE) [Thisted, 1988]. Given a set of assumptions about the learner's 
architecture and sources of noise in the output, MLE provides a statistical basis for 
learning. Although the specific MLE techniques we use hold exactly only for linear 
models, making certain computational approximations allows them to be used with 
nonlinear systems such as neural networks. 

We begin with a training set of input-output pairs (Xi, Yi)i=l and a learner fw O· 
We define fw(x) to be the learner's output given input X and weight vector w. 
Under an assumption of additive Gaussian noise, the maximum likelihood estimate 
for the weight vector, W, is that which minimizes the sum squared error Esse = 
2:7=1(JW(Xi) - Yi)2. The estimate W gives us an estimate of the output at a novel 
input: if = fw(x) (see e.g. Figure 1a). 

MLE allows us to compute the variances of our weight and output estimates. Writ
ing the output sensitivity asgw(x) = 8fw(x)/8w, the covariances of ware 

where the last approximation assumes local linearity of gw(x). (For brevity, the 
output sensitivity will be abbreviated to g( x) in the rest of the paper.) 
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Figure 1: a) A set of training examples for a classification problem, and the net
work's best fit to the data. b) Maximum likelihood estimate of the network's output 
variance for the same problem. 

For a given reference input X r , the estimated output variance is 

var(xr ) = g(Xr? A- 1g(xr ). (1) 

Output variance corresponds to the model's estimate of the expected squared dis
tance between its output fw(x) and the unknown "true" output y. Output variance 
then, corresponds to the model's estimate of its mean squared error (MSE) (see Fig
ure 1 b). If the estimates are accurate then minimizing the output variance would 
correspond to minimizing the network's MSE. 

In optimal experiment design, we estimate how adding a new training example is 
expected to change the computed variances. Given a novel X n +1, we can use OED 
to predict the effect of adding Xn+1 and its as-yet-unknown Yn+1 to the training 
set. We make the assumption that 

-1 ( T)-1 An+1 ~ An + g(xn+dg(xn+d , 

which corresponds to assuming that our current model is already fairly good. Based 
on this assumption, the new parameter variances will be 

A~~1 = A~l - A~1g(xn+d(1 + g(Xn+1? A~1g(xn+d)g(xn+t)T A~1. 

Combined with Equation 1, this predicts that if we take a new example at X n +1, 
the change in output variance at reference input Xr will be 

~var(Xr ) (g(xrf A~lg(xn+l»2(1 + g(Xn+1)T A;;lg(xn+d) 

cov(xr, Xn+l)2(1 + var(xn+d) (2) 

To minimize the expected value of var(xr ), we should select Xn+l so as to maximize 
the right side of Equation 2. For other interesting OED measures, see MacKay 
[1992] . 
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3 Adapting OED to Exploration 

When building a world model, the learner is trying to build a mapping, e.g. from 
joint angles to cartesian coordinates (or from state-action pairs to next states). If 
it is allowed to select arbitrary joint angles (inputs) in successive time steps, then 
the problem is one of selecting the next "query" to make ([Cohn, 1990], [Baum and 
Lang, 1991]). In exploration, however, one's choices for a next input are constrained 
by the current input. We cannot instantaneously "teleport" to remote parts of the 
state space, but must choose among inputs that are available in the next time step. 

One approach to selecting a next input is to use selective sampling: evaluate a num
ber of possible random inputs, choose the one with the highest expected gain. In a 
high-dimensional action space, this is inefficient. The approach followed here is that 
of gradient search, differentiating Equation 2 and hillclimbing on 8jj,var( x r )/ 8Xn +l. 

Note that Equation 2 gives the expected change in variance only at a single point 
X r , while we wish to minimize the average variance over the entire domain. Ex
plicitly integrating over the domain is intractable, so we must make do with an 
approximation. MacKay [1992] proposed using a fixed set of reference points and 
measuring the expected change in variance over them. This produces spurious lo
cal maxima at the reference points, and has the undesirable effect of arbitrarily 
quantizing the input space. Our approach is to iteratively draw reference points at 
random (either uniformly or according to a distribution of interest), and compute 
a stochastic approximation of jj, var. 

By climbing the stochastically approximated gradient, either to convergence or to 
the horizon of available next inputs, we will settle on an input/action with a (locally) 
optimal decrease in expected variance. 

4 Experimental Results 

In this section, I describe two sets of experiments. The first attempts to confirm 
that the gains predicted by optimal experiment design may actually be realized in 
practice, and the second studies the application of OED to a simple learning task. 

4.1 Expected versus actual gain 

It must be emphasized that the gains predicted by OED are expected gains. These 
expectations are based on the relatively strong assumptions of MLE, which may 
not strictly hold. In order for the expected gains to materialize, two "bridges" must 
be crossed. First, the expected decrease in model variance must be realized as an 
actual decrease in variance. Second, the actual decrease in model variance must 
translate into an actual decrease in model MSE. 

4.1.1 Expected decreases in variance --+ actual decreases in variance 

The translation from expected to actual changes in variance requires coordination 
between the exploration strategy and the learning algorithm: to predict how the 
variance of a weight will change with a new piece of data, the predictor must know 
how the weight itself (and its neighboring weights) will change. Using a black 
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Figure 2: a) Correlations between expected change in output variance and actual 
change output variance b) Correlations between actual change in output variance 
and change in mean squared error. Correlations are plotted for a network trained 
on 50 examples from the arm kinematics task. 

box routine like backpropagation to update the weights virtually guarantees that 
there will be some mismatch between expected and actual decreases in variance. 
Experiments indicate that, in spite of this, the correlation between predicted and 
actual changes in variance are relatively good (Figure 2a) . 

4.1.2 Decreases in variance -- decreases in MSE 

A more troubling translation is the one from model variance to model correctness. 
Given the highly nonlinear nature of a neural network, local minima may leave us 
in situations where the model is very confident but entirely wrong. Due to high 
confidence, the learner may reject actions that would reduce its mean squared error 
and explore areas where the model is correct, but has low confidence. Evidence 
of this behavior is seen in the lower right corner of Figure 2b, where some actions 
which produce a large decrease in variance have little effect on the network's MSE. 
While this decreases the utility of OED, it is not crippling. We discuss one possible 
solution to this problem at the end of this paper . 

4.2 Learning kinematics 

We have used the the stochastic approximation of ~var to guide exploration on 
several simple tasks involving classification and regression. Below , I detail the 
experiments involving exploration of the kinematics of a simple two-dimensional, 
two-joint arm . The task was to learn a forward model 8 1 x 8 2 -- X X Y through 
exploration, which could then be used to build a controller following Jordan [1992]. 
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The model was to be learned by a feedforward network with a sigmoid transfer 
function using a single hidden layer of 8 or 20 hidden units. 

Figure 3: Learning 2D arm kinematics with 8 hidden units. a) Geometry of the 2D, 
two-joint arm. b) Sample trajectory using OED-based greedy exploration. 

On each time step, the learner was allowed to select inputs 8 1 and 8 2 and was then 
given tip position x and y to incorporate into its training set. It then hillclimbed 
to find the next 8 1 and 8 2 within its limits of movement that would maximize the 
stochastic approximation of ~var . On each time step 8 1 and 8 2 were limited to 
change by no more than ±36° and ±18° respectively. Simulations were performed on 
the Xerion simulator (made available by the University of Toronto), approximating 
the variance gradient on each step with 100 randomly drawn points. A sample tip 
trajectory is illustrated in Figure 3b. 

We compared the performance of this one-step optimal (greedy) learner, in terms 
of mean squared error, with that of an identical learner which explored randomly 
by "flailing." Not surprisingly, the improvement of greedy exploration over random 
exploration is significant (Figure 4b). The asymptotic performance of the greedy 
learner was better than that of the random learner, and it reached its asymptote in 
much few steps. 

5 Discussion 

The experiments described in this paper indicate that optimal experiment design 
is a promising tool for guiding neural network exploration. It requires no arbi
trary discretization of state or action spaces, and is amenable to gradient search 
techniques. It does, however, have high computational costs and, as discussed in 
Section 4.1.2, may be led astray if the model settles in a local minimum. 

5.1 Alternatives to greedy OED 

The greedy approach is prone to "boxing itself into a corner" while leaving important 
parts of the domain unexplored. One heuristic for avoiding local minima is to 
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Figure 4: Learning 2D arm kinematics. a) MSE for a single exploration trajectory 
(20 hidden units). b) Plot of MSE for random and greedy exploration vs. number 
of training examples, averaged over 12 runs (8 hidden units). 

occasionally check the expected gain in other parts of the input space and move 
towards them if they promise much greater gain than a greedy step. 

The theoretically correct but computationally expensive approach is to optimize 
over an entire trajectory. Trajectory optimization entails starting with an initial 
trajectory, computing the expected gain over it, and iteratively perturbing points on 
the trajectory towards towards optimal expected gain (subject to other points along 
the trajectory being explored). Experiments are currently underway to determine 
how much of an improvement may be realized with trajectory optimization; it is 
unclear whether the improvement over the greedy approach will be worth the added 
computational cost. 

5.2 Computational Costs 

The computational costs of even greedy OED are great . Selecting a next action 
requires computation and inversion of the hessian {)2 Eue/ ow 2 . Each time an action 
is selected and taken, the new data must be incorporated into the training set, 
and the learner retrained . In comparison, when using a flailing strategy or a fixed 
trajectory, the data may be gathered with little computation, and the learner trained 
only once on the batch. In this light, the cost of data must be much greater than 
the cost of computation for optimal experiment design to be a preferable strategy. 

There are many approximations one can make which significantly bring down the 
cost of OED. By only considering covariances of weights leading to the same neuron, 
the hessian may be reduced to a block diagonal form, with each neuron computing 
its own (simpler) covariances in parallel. As an extreme, one can do away with 
covariances entirely and rely only on individual weight variances, whose computa
tion is simple. By the same token, one can incorporate the new examples in small 
batches, only retraining every 5 or so steps. While suboptimal from a data gather
ing perspective, they appear to still outperform random exploration, and are much 
cheaper than "full-blown" optimization. 
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5.3 Alternative architectures 

We may be able to bring down computational costs and improve performance by 
using a different architecture for the learner. With a standard feedforward neural 
network, not only is the repeated compution of variances expensive, it sometimes 
fails to yield estimates suitable for use as confidence intervals (as we saw in Sec
tion 4.1.2). A solution to both of these problems may lie in selection of a more 
amenable architecture and learning algorithm. One such architecture, in which 
output variances have a direct role in estimation, is a mixture of Gaussians, which 
may be efficiently trained using an EM algorithm [Ghahramani and Jordan, 1994]. 
We expect that it is along these lines that our future research will be most fruitful. 
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