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Abstract

We present a fast algorithm for non-linear dimension reduction.
The algorithm builds a local linear model of the data by merging
PCA with clustering based on a new distortion measure. Exper-
iments with speech and image data indicate that the local linear
algorithm produces encodings with lower distortion than those built
by five layer auto-associative networks. The local linear algorithm
is also more than an order of magnitude faster to train.

1 Introduction

Feature sets can be more compact than the data they represent. Dimension reduc-
tion provides compact representations for storage, transmission, and classification.
Dimension reduction algorithms operate by identifying and eliminating statistical
redundancies in the data.

The optimal linear technique for dimension reduction is principal component anal-
ysis (PCA). PCA performs dimension reduction by projecting the original n-
dimensional data onto the m < n dimensional linear subspace spanned by the
leading eigenvectors of the data’s covariance matrix. Thus PCA builds a global
linear model of the data (an m dimensional hyperplane). Since PCA is sensitive
only to correlations, it fails to detect higher-order statistical redundancies. One
expects non-linear techniques to provide better performance; i.e. more compact
representations with lower distortion.

This paper introduces a local linear technique for non-linear dimension reduction.
We demonstrate its superiority to a recently proposed global non-linear technique,
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and show that both non-linear algorithms provide better performance than PCA
for speech and image data.

2 Global Non-Linear Dimension Reduction

Several researchers (e.g. Cottrell and Metcalfe 1991) have used layered feedforward
auto-associative networks with a bottle-neck middle layer to perform dimension
reduction. It is well known that auto-associative nets with a single hidden layer
cannot provide lower distortion than PCA (Bourlard and Kamp, 1988). Recent
work (e.g. Oja 1991) shows that five layer auto-associative networks can improve
on PCA. These networks have three hidden layers (see Figure 1(a)). The first and
third hidden layers have non-linear response, and are referred to as the mapping
layers. The m < n nodes of the middle or representation layer provide the encoded
signal.

The first two layers of weights produce a projection from R™ to R™. The last two
layers of weights produce an immersion from R™ into R". If these two maps are
well chosen, then the complete mapping from input to output will approximate the
identity for the training data. If the data requires the projection and immersion
to be non-linear to achieve a good fit, then the network can in principal find such
functions.

Representation

Figure 1: (a) A five layer feedforward auto-associative network. This network can
perform a non-linear dimension reduction from n to m dimensions. (b) Global
curvilinear coordinates built by a five layer network for data distributed on the
surface of a hemisphere. When the activations of the representation layer are swept,
the outputs trace out the curvilinear coordinates shown by the solid lines.

The activities of the nodes in the representation layer form global curvilinear co-
ordinates on a submanifold of the input space (see Figure 1(b)). We thus refer
to five layer auto-associative networks as a global, nonlinear dimension reduction
technique.

153



154

Kambhatla and Leen

3 Locally Linear Dimension Reduction

Five layer networks have drawbacks; they can be very slow to train and they are
prone to becoming trapped in poor local optima. Furthermore, it may not be
possible to accurately fit global, low dimensional, curvilinear coordinates to the
data. We propose an alternative that does not suffer from these problems.

Our algorithm pieces together local linear coordinate patches. The local regions are
defined by the partition of the input space induced by a vector quantizer (VQ). The
orientation of the local coordinates is determined by PCA (see Figure 2). In this
section, we present two ways to obtain the partition. First we describe an approach
that uses Euclidean distance, then we describe a new distortion measure which is
optimal for our task (local PCA).
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Figure 2: Local coordinates built by our algorithm (dubbed VQPCA) for data dis-
tributed on the surface of a hemisphere. The solid lines represent the two principal
eigen-directions in each Voronoi cell. The region covered by one Voronoi cell is
shown shaded.

3.1 Euclidean partitioning

Here, we do a clustering (with Euclidean distance) followed by PCA in each of the
local regions. The hybrid algorithm, dubbed VQPCA, proceeds in three steps:

1. Using competitive learning, train a VQ (with Euclidean distance) with @
reference vectors (weights) (r1,72,...,7Q).

2. Perform a local PCA within each Voronoi cell of the VQ. For each cell,
compute the local covariance matrix for the data with respect to the cor-
responding reference vector (centroid) r.. Next compute the eigenvectors
(ef,...,e5) of each covariance matrix.

3. Choose a target dimension m and project each data vector z onto
the leading m eigenvectors to obtain the local linear coordinates
z=(ef-(z—rc),...,e5 (z —7c)).



Fast Non-Linear Dimension Reduction

The encoding of x consists of the index c of the reference cell closest (Euclidean
distance) to z, together with the m < n component vector z. The decoding is given
by

B=rc+ Yy el (1)
=1

where r. is the reference vector (centroid) for the cell ¢, and e are the leading
eigenvectors of the covariance matrix of the cell c. The mean squared reconstruction
error incurred by VQPCA is

Erecon = El|lz — 2||*] = El||lz —rc — Z zi€5]|* ] (2)

where E[-] denotes an expectation with respect to z, and & is defined in (1).

Training the VQ and performing the local PCA are very fast relative to training a
five layer network. The training time is dominated by the distance computations
for the competitive learning. This computation can be speeded up significantly by
using a multi-stage architecture for the VQ (Gray 1984).

3.2 Projection partitioning

The VQPCA algorithm as described above is not optimal because the clustering is
done independently of the PCA projection. The goal is to minimize the expected
error in reconstruction (2). We can realize this by using the expected reconstruction
error as the distortion measure for the design of the VQ.

The reconstruction error for VQPCA (€ ¢con defined in (2)) can be written in matrix
form as

Erecon = E[(& — 1) P Po(z —1c)], (3)
where P, is an m X n matrix whose rows are the orthonormal trailing eigenvectors
of the covariance matrix for the cell ¢. This is the mean squared Euclidean distance
between the data and the local hyperplane.

The expression for the VQPCA error in (2) suggests the distortion measure

d(z,r.) = (x —r)TPT Pz —rc) . (4)
We call this the reconstruction distance. The reconstruction distance is the error
incurred in approximating z using only m local PCA coefficients. It is the squared
projection of the difference vector z—r. on the trailing eigenvectors of the covariance
matrix for the cell ¢. Clustering with respect to the reconstruction distance directly
minimizes the expected reconstruction error £, ccon-

The modified VQPCA algorithm is:

1. Partition the input space using a VQ with the reconstruction distance mea-
sure ! in (4).

2. Perform a local PCA (same as in steps 2 and 3 of the algorithm as described
in section 3.1).

!The VQ is trained using the (batch mode) generalized Lloyd’s algorithm (Gersho and
Gray, 1992) rather than an on-line competitive learning. This avoids recomputing the
matrix P. (which depends on r.) for each input vector.
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4 Experimental Results

We apply PCA, five layer networks (5LNs), and VQPCA to dimension reduction
of speech and images. We compare the algorithms using two performance criteria:
training time and the distortion in the reconstructed signal. The distortion measure
is the normalized reconstruction error:

£ — grecon — E[”.’E—i”z]
e B lel?] E[ ||l ]

4.1 Model Construction

The 5LNs were trained using three optimization techniques: conjugate gradient
descent (CGD), the BFGS algorithm (a quasi-Newton method (Press et al 1987)),
and stochastic gradient descent (SGD). In order to limit the space of architectures,
the 5LNs have the same number of nodes in both of the mapping (second and
fourth) layers.

For the VQPCA with Euclidean distance, clustering was implemented using stan-
dard VQ (VQPCA-Eucl) and multistage quantization (VQPCA-MS-E). The multi-
stage architecture reduces the number of distance calculations and hence the train-
ing time for VQPCA (Gray 1984).

4.2 Dimension Reduction of Speech

We used examples of the twelve monothongal vowels extracted from continuous
speech drawn from the TIMIT database (Fisher and Doddington 1986). Each input
vector consists of 32 DFT coefficients (spanning the frequency range 0-4kHz), time-
averaged over the central third of the utterance. We divided the data set into a
training set containing 1200 vectors, a validation set containing 408 vectors and
a test set containing 408 vectors. The validation set was used for architecture
selection (e.g the number of nodes in the mapping layers for the five layer nets).
The test set utterances are from speakers not represented in the training set or the
validation set. Motivated by the desire to capture formant structure in the vowel
encodings, we reduced the data from 32 to 2 dimensions. (Experiments on reduction
to 3 dimensions gave similar results to those reported here (Kambhatla and Leen
1993).)

Table 1 gives the test set reconstruction errors and the training times. The VQPCA
encodings have significantly lower reconstruction error than the global PCA or five
layer nets. The best 5LNs have slightly lower reconstruction error than PCA, but
are very slow to train. Using the multistage search, VQPCA trains more than
two orders of magnitude faster than the best 5LN, and achieves an error about 0.7
times as great. The modified VQPCA algorithm (with the reconstruction distance
measure used for clustering) provides the least reconstruction error among all the
architectures tried.












