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Abstract 

Spotting tasks require detection of target patterns from a background of 
richly varied non-target inputs. The performance measure of interest for 
these tasks, called the figure of merit (FOM), is the detection rate for 
target patterns when the false alarm rate is in an acceptable range. A 
new approach to training spotters is presented which computes the FOM 
gradient for each input pattern and then directly maximizes the FOM 
using b ackpropagati on. This eliminates the need for thresholds during 
training. It also uses network resources to model Bayesian a posteriori 
probability functions accurately only for patterns which have a 
significant effect on the detection accuracy over the false alarm rate of 
interest. FOM training increased detection accuracy by 5 percentage 
points for a hybrid radial basis function (RBF) - hidden Markov model 
(HMM) wordspotter on the credit-card speech corpus. 

1 INTRODUCTION 
Spotting tasks require accurate detection of target patterns from a background of richly var­
ied non-target inputs. Examples include keyword spotting from continuous acoustic input, 
spotting cars in satellite images, detecting faults in complex systems over a wide range of 
operating conditions, detecting earthquakes from continuous seismic signals, and finding 
printed text on images which contain complex graphics. These problems share three com­
mon characteristics. First, the number of instances of target patterns is unknown. Second, 
patterns from background, non-target, classes are varied and often difficult to model accu­
rately. Third, the performance measure of interest, called the figure of merit (FOM), is the 
detection rate for target patterns when the false alarm rate is over a specified range. 

Neural network classifiers are often used for detection problems by training on target and 
background classes, optionally normalizing target outputs using the background output, 
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Figure 1. Block diagram of a spotting system. 

and thresholding the resulting score to generate putative hits, as shown in Figure 1. Putative 
hits in this figure are input patterns which generate normalized scores above a threshold. 
We have developed a hybrid radial basis function (RBF) - hidden Markov model (HMM) 
keyword spotter. This wordspotter was evaluated using the NIST credit card speech data­
base as in (Rohlicek, 1993, Zeppenfeld, 1993) using the same train/evaluation split of the 
training conversations as was used in (Zeppenfeld, 1993). The system spots 20 target key­
words, includes one general filler class, and uses a Viterbi decoding backtrace as described 
in (Lippmann, 1993) to backpropagate errors over a sequence of input speech frames. The 
performance of this spotting system and its improved versions is analyzed by plotting de­
tection versus false alarm rate curves as shown in Figure 2. These curves are generated by 
adjusting the classifier output threshold to allow few or many putative hits. Wordspotter pu­
tative hits used to generate Figure 2 correspond to speech frames when the difference be­
tween the cumulative log Viterbi scores in output HMM nodes of word and filler models is 
above a threshold. The FOM for this wordspotter is defined as the average keyword detec­
tion rate when the false alarm rate ranges from 1 to 10 false alarms per keyword per hour. 
The 69.7% figure of merit for this system means that 69.7% of keyword occurrences are 
detected on the average while generating from 20 to 200 false alarms per hour of input 
speech. 

2 PROBLEMS WITH BACKPROPAGATION TRAINING 
Neural network classifiers used for spotting tasks can be trained using conventional back­
propagation procedures with 1 of N desired outputs and a squared error cost function. This 
approach to training does not maximize the FOM because it attempts to estimate Bayesian 
a posteriori probability functions accurately for all inputs even if a particular input has little 
effect on detection accuracy at false alarm rates of interest. Excessive network resources 
may be allocated to modeling the distribution of common background inputs dissimilar 
from targets and of high-scoring target inputs which are easily detected. This problem can 
be addressed by training only when network outputs are above thresholds. This approach is 
problematic because it is difficult to set the threshold for different keywords, because using 
fixed target values of 1.0 and 0.0 requires careful normalization of network output scores to 
prevent saturation and maintain backpropagation effectiveness, and because the gradient 
calculated from a fixed target value does not reflect the actual impact on the FOM. 
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Figure 2. Detection vs. false alarm rate curve for a 20-word hybrid wordspotter. 

Figure 3 shows the gradient of true hits and false alarms when target values are set to be 1.0 
for true hits and 0.0 for false alarms, the output unit is sigmoidal, and the threshold for a 
putative hit is set to roughly 0.6. The gradient is the derivative of the squared error cost with 
respect to the input of the sigmodal output unit. As can be seen, low-scoring hits or false 
alarms that may affect the FOM are ignored, the gradient is discontinuous at the threshold, 
the gradient does not fall to zero fast enough at high values, and the relative sizes of the hit 
and false alarm gradients do not reflect the true effect of a hit or false alarm on the FOM. 

3 FIGURE OF MERIT TRAINING 
A new approach to training a spotter system called "figure of merit training" is to directly 
compute the FOM and its derivative. This derivative is the change in FOM over the change 
in the output score of a putative hit and can be used instead of the derivative of a squared­
error or other cost function during training. Since the FOM is calculated by sorting true hits 
and false alarms separately for each target class and forming detection versus false alarm 
curves, these measures and their derivatives can not be computed analytically. Instead, the 
FOM and its derivative are computed using fast sort routines. These routines insert a new 
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Figure 3. The gradient for a sigmoid output unit when the target value for true hits is set to 
1.0 and the target value for false alarms is set to 0.0. 
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putative hit into an already sorted list and calculate the change in the FOM caused by that 
insertion. The running putative hit list used to compute the FOM is updated after every new 
putative hit is observed and it must contain all putative hits observed during the most recent 
past training cycle through all training patterns. The gradient estimate is smoothed over 
nearby putative hit scores to account for the quantized nature of detection versus false alarm 
rate curves. 

Figure 4 shows plots of linearly scaled gradients for the 20-word hybrid wordspotter. Each 
value on the curve represents the smoothed change in the FOM that occurs when a single 
hit or false alarm with the specified normalized log output score is inserted into the current 
putative hit list. Gradients are positive for putative hits corresponding to true hits and neg­
ative for false alarms. They also fall off to zero for putative hits with extremely high or low 
scores. Shapes of these curves vary across words. The relative importance of a hit or false 
alarm, the normalized output score which results in high gradient values, and the shape of 
the gradient curve varies. Use of a squared error or other cost function with sigmoid output 
nodes would not generate this variety of gradients or automatically identify the range of pu­
tative hit scores where gradients should be high. Application ofFOM training requires only 
the gradients shown in these curves with no supplementary thresholds. Patterns with low 
and high inputs will have a minimal effect during training without using thresholds because 
they produce gradients near zero. 

Different keywords have dramatically different gradients. For example, credit-card is long 
and the detection rate is high. The overall FOM thus doesn't change much if more true hits 
are found. A high scoring false alarm, however, decreases the FOM drastically. There is thus 
a large negative gradient for false alarms for credit-card. The keywords account and check 
are usually short in duration and thus more difficult to detect, thus any increase in number 
of true hits strongly increases the overall FOM. On the other hand, since in this database, 
the words account and check occur much less frequently than credit-card, a high scoring 
false alarm for the words account and check has less impact on the overall FOM. The gra­
dient for false alarms for these words is thus correspondingly smaller. Comparing the 
curves in Figure 3 with the fixed prototypical curve in Figure 4 demonstrates the dramatic 
differences in gradients that occur when the gradient is calculated to maximize the FOM 
directly instead of using a threshold with sigmoid output nodes. 

"ACCOUNT" 
0.3 r-------, 

o 

~ 
w 
is -03 
« 
ffi 

-D.6 

HIT 

FA 

-0. 9 ~--'--.L..-L--'--.L...-L---' 

"CHECK' "CREDIT-CARD' 

-100 0 100 200 300 -100 0 100 200 300 -100 0 100 200 300 
PUTATIVE HIT SCORE 

Figure 4. Figure of merit gradients computed for true hits (HIT) and false alarms (FA) 
with scores ranging from -100 to 300 for the keywords account, check, and 
credit-card. 



Figure of Merit Training for Detection and Spotting 1023 

FaM training is a general technique that can applied to any "spotting" task where a set of 
targets must be discriminated from background inputs. FaM training was successfully test­
ed using the hybrid radial basis function (RBF) - hidden Markov model (HMM) keyword 
spotter described in (Lippmann, 1993). 

4 IMPLEMENTATION OF FOM TRAINING 
FaM training is applied to our high-performance HMM wordspotter after forward-back­
ward training is complete. Word models in the HMM wordspotter are first used to spot on 
training conversations. The FaM gradient of each putative hit is calculated when this hit is 
inserted into the putative hit list. The speech segment corresponding to a putative hit is ex­
cised from the conversation speech file and the corresponding keyword model is used to 
match each frame with a particular state in the model using a Viterbi backtrace (shown in 
Figure 5.) The gradient is then used to adjust the location of each Gaussian component in a 
node as in RBF classifiers (Lippmann, 1993) and also the state weight of each state. The 
state weight is a penalty added for each frame assigned to a state. The weight for each in­
dividual state is adjusted according to how important each state is to the detection of the 
keyword. For example, many false alarms for the word card are words that sound like part 
of the keyword such as hard or far. The first few states of the card model represent the sound 
/kJ and false alarms stay in these front states only a short time. If the state weight of the first 
few states of the card model is large, then a true hit has a larger score than false alarms. 

The putative hit score which is used to detect peaks representing putative hits is generated 
according to 

S I = Sk d - S rll . tota eywor J r er 
(EQ 1) 

In this equation, Stotal is the putative hit score, Skeyword is the log Viterbi score in the 
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Figure 5. State weights and center updates are applied to the state that is matched to each 
frame in a Viterbi backtrace. 
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last node of a specific keyword model computed using the Viterbi algorithm from the be­
ginning of the conversation to the frame where the putative hit ended, and S Ii/Ie r is the log 
Viterbi score in the last node of the filler model. The filler score is used to normalize the 
keyword score and approximate a posterior probability. The keyword score is calculated us­
ing a modified form of the Viterbi algorithm 

a. (t + 1) = max(a . (t) + a .. , a. 1 (t) + a. .) + d . (t, x) + W .• 
/ / /, / /- /-1, / / / 

(EQ2) 

This equation is identical to the normal Viterbi recursion for left-to-right linear word mod­
els after initialization, except the extra state score wi is added. In this equation, a i (t) is 
the log Viterbi score in node i at time t, a j . is the log of the transition probability from 
node i to node j ,and d j (t, x) is the log lik~lihood distance score for node i for the input 
feature vector x at time t . 

Word scores are computed and a peak-picking algorithm looks for maxima above a low 
threshold. After a peak representing a putative hit is detected, frames of a putative hit are 
aligned with the states in the keyword model using the Viterbi backtrace and both the means 
of Gaussians in each state and state weights of the keyword model are modified. State 
weights are modified according to 

(EQ 3) 

In this equation, Wj (t) is the state weight in node i at time t, gradient is the FOM 
gradient for the putative hit, llstate is the stepsize for state weight adaptation, and 

duration is the number of frames aligned to node i . If a true hit occurs, and the gradient 
is positive, the state weight is increased in proportion to the number of frames assigned to 
a state. If a false alarm occurs, the state weight is reduced in proportion to the number of 
frames assigned to a state. The state weight will thus be strongly positive if there are many 
more frames for a true hit that for a false alarm. It will be strongly negative if there are more 
frames for a false alarm than for a true hit. High state weight values should thus improve 
discrimination between true hits and false alarms. 

The center of the Gaussian components within each node, which are similar to Gaussians 
in radial basis function networks, are modified according to 

x.(t) -m .. (t) 
m .. (t+ 1) = miJ. (t) +gradientxllcenterX J /J V a .. 

/J 
(EQ4) 

In this equation, m j . (t) is the j th component of the mean vector for a Gaussian hidden 
node in HMM state 1 at time t, gradient is the FOM gradient, llcenter is the stepsize 
for moving Gaussian centers, x· (t) is the value of the j th component of the input feature 
vector at time t, and a j . is the'standard deviation of the j th component of the Gaussian 
hidden node in HMM st~te i . 

For each true hit, the centers of Gaussian hidden nodes in a state move toward the observa­
tion vectors of frames assigned to a particular state. For a false alarm, the centers move 
away from the observation vectors that are assigned to a particular state. Over time, the cen­
ters move closer to the true hit observation vectors and further away from false alarm ob­
servation vectors. 
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Figure 6. Change in FOM vs. the number of conversations that the models have been 
trained with. There were 25 male training conversations and 23 female training 
conversations. 

5 EXPERIMENTAL RESULTS 
Experiments were performed using a HMM wordspotter that was trained using maximum 
likelihood algorithm. More complicated models were created for words which occur fre­
quently in the training set. The word models for card and credit-card were increased to four 
mixtures per state. The models for cash, charge, check, credit, dollar, interest, money, 
month, and visa were increased to two mixtures per state. All other word models had one 
mixture per state. The number of states per keyword is roughly 1.5 times the number of pho­
nemes in each keyword. Covariance matrices were diagonal and variances were estimated 
separately for all states. All systems were trained on the first 50 talkers in the credit card 
training corpus and evaluated using the last 20 talkers. 

An initial set of models was trained during 16 passes through the training data using whole­
word training and Viterbi alignment on only the excised words from the training conversa­
tions. This training provided a FOM of 62.5% on the 20 evaluation talkers. Embedded for­
ward-backward reestimation training was then performed where models of keywords and 
fillers are linked together and trained jointly on conversations which were split up into sen­
tence-length fragments. This second stage ofHMM training increased the FOM by two per­
centage points to 64.5%. The detection rate curves of these systems are shown in Figure 2. 

FOM training was then performed for six passes through the training data. On each pass, 
conversations were presented in a new random order. The change in FOM for the training 
set and the evaluation set is shown in Figure 6. The FOM on the training data for both male 
and female talkers increased by more than 10 percentage points after roughly 50 conversa­
tions had been presented. The FOM on the evaluation data increased by 5.2 percentage 
points to 69.7% after three passes through the training data, but then decreased with further 
training. This result suggests that the extra structure learned during the final three training 
passes is overfitting the training data and providing poor performance on the evaluation set. 
Figure 7 shows the spectrograms of high scoring true hits and false alarms for the word card 
generated by our wordspotter. All false alarms shown are actually the occurrences of the 
word car. The spectrograms of the true hits and the false alarms are very similar and the 
actual excised speech segments are difficult even for humans to distinguish. 
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Figure 7. Spectrograms of high scoring true hit and false alarm for the word card. 

6 SUMMARY 
Detection of target signals embedded in a noisy background is a common and difficult prob­
lem distinct from the task of classification. The evaluation metric of a spotting system, 
called Figure of Merit (FOM), is also different from the classification accuracy used to eval­
uate classification systems. FOM training uses a gradient which directly reflects a putative 
hit's impact on the FOM to modify the parameters of the spotting system. FOM training 
does not require careful adjustment of thresholds and target values and has been applied to 
improve a wordspotter's FOM from 64.5% to 69.7% on the credit card database. POM 
training can also be applied to other spotting tasks such as arrhythmia detection and address 
block location. 
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