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Abstract 

Progress ha.s been made in comput.ational implementation of speech 
production based on physiological dat.a. An inverse dynamics 
model of the speech articulator's l1111sculo-skeletal system. which 
is the mapping from art.iculator t.rajectories to e\ectromyogl'aphic 
(EMG) signals, was modeled using the acquired forward dynamics 
model and temporal (smoot.hness of EMG activation) and range 
constraints. This inverse dynamics model allows the use of a faster 
speech mot.or control scheme, which can be applied to phoneme-to­
speech synthesis via musclo-skeletal system dynamics, or to future 
use in speech recognition. The forward acoustic model, which is the 
mapping from articulator trajectories t.o the acoustic parameters, 
was improved by adding velocity and voicing information inputs 
to distinguish acollst.ic paramet.er differences caused by changes in 
source characterist.ics. 

1 INTRODUCTION 

Modeling speech articulator dynamics is important not only for speech science, 
but also for speech processing. This is because many issues in speech phenomena, 
such as coarticulation or generat.ion of aperiodic sources, are caused by temporal 
properties of speech articulat.or behavior due t.o musculo-skelet.al system dynamics 
and const.raints on neurO-l1lotor command activation . 
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We have proposed using neural networks for a computational implementation of 
speech production based on physiological activities of speech articulator muscles. 
In previous works (Hirayama, Vatikiotis-Bateson, Kawato and Jordan 1992; Hi­
rayama, Vatikiotis-Bateson, Honda, Koike and Kawato 1993), a neural network 
learned the forward dynamics, relating motor commands to muscles and the ensu­
ing articulator behavior. From movement t.rajectories, the forward acoustic network 
generated the acoustic PARCOR parameters (Itakura and Saito, 1969) that were 
then used to synthesize the speech acoustics. A cascade neural network containing 
the forward dynamics model along with a suitable smoothness criterion was used 
to produce a continuous motor command from a sequence of discrete articulatory 
targets corresponding to the phoneme input string. 

Along the same line, we have extended our model of speech motor control. In this 
paper, WI~ focus on modeling the inverse dynamics of the musculo-skeletal system. 
Having an inverse dynamics model allows us to use a faster control scheme, which 
permits phoneme-to-speech synthesis via musculo-skeletal system dynamics, and 
ultimately may be useful in speech recognition. The final sectioll of this paper 
reports improvements in the forward acoustic model, which were made by incor­
porating articulator velocity and voicing information to distinguish the acoustic 
parameter differences caused by changes in source characteristics. 

2 INVERSE DYNAMICS MODELING OF 
MUSCULO-SKELETAL SYSTEM 

From the viewpoint of control theory, an inverse dynamics model of a controlled 
object pla.ys an essential role in fecdfonvard cont.rol. That is, an accurate inverse dy­
namics model outputs an appropriate control sequence that realizes a given desired 
trajectory by using only fecdforward cOlltrol wi t.hout any feedback information, so 
long as there is no perturbation from the environment. For speech a rticulators, the 
main control scheme cannot rely upon feedback control because of sensory feedback 
delays. Thus, we believe that the inverse dynamics model is essential for biological 
motor control of speech and for any efficient speech synthesis algorithm based on 
physiological data. 

However, the speech articulator system is an excess-degrees-of-freedom system, 
thus the mapping from art.iculator t.rajectory (posit.ion, velocit.y, accelerat.ion) to 
electromyographic (E~fG) activity is one-to-many. That is, different EMG com­
binations exist for the same articulat.or traject.ory (for example, co-contraction of 
agonist and antagonist muscle pairs). Consequently, we applied the forward mod­
eling approach to learning an inverse model (Jordan alld Rumelhart, 1992), i.e., 
constrained supervised leaming, as shown in Figure 1. The inputs of the inverse 

Desired 
Trajectory r--~--..., Control p----..., Trajectory 

Inverse I--__ ~ Forward t------~~ 
Model Model ---Error 

Figure 1: Inverse dynamics modeling using a forward dynamics model (Jordan and 
Rumelhart, 1992). 
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Figure 2: After learning, the inverse model output "optimal" EMG (anterior belly of 
the digastric) for jaw lowering is compared with actual EMG for the tf'st trajectory. 

dynamics model are articulator positions, velocities, and accelerations; the outputs 
are rectified, integrated, and filtered EIVIG for relevant muscles. The forward dy­
namics model previously reported (Hirayama et al., 1993) was used for determining 
the error signals of the inverse dynamics model . 

To choose a realistic EMG patt.ern from among diverse possible sciutions, we use 
both temporal and range const.raints. The temporal constraint is related to the 
smoothnt~ss of EMG activat.ion, i.e., minimizing EI\'1G activation change (Uno, 
Suzuki, and Kawat.o, 1989). The minimum and maximum values of the range 
constraint were chosen using valucs obt.ained from t.he experimental data. Direct 
inverse modeling (Albus, 1975) was uscd to det.ermine weights, which were then sup­
plied as initial weights to t.he constrained supervised learning algorithm of Jordan 
and Rumelhart's (1992) inverse dynamics modeling met.hod. 

Figure 2 shows an example of t.he inverse dynnmics model output after learning, 
when a real articulator trajectory, not. included in the training set, was given as 
the input. Note that the net.work output cannot be exactly t.he same as the actual 
EMG, as the network chooses a unique "optimal" EMG from many possible EMG 
patterns that appear in the actual EI\IG for t.he trajectory. 
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Figure 3: Trajectories generated by the forward dynamics net.work for the two 
methods of inverse dynamics modeling compared with t.he desired trajectory (ex­
perimental da t.a). 
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Since the inverse dynamics model was obtained by learning, when the desired tra­
jectory is given to the inverse dynamics model, an articulator trajectory can be 
generated with the forward dynamics network previously reported (Hirayama et al., 
1993). Figure 3 compares trajectories generated by the forward dynamics network 
using EMG derived from the direct inverse dynamics method or the constrained su­
pervised learning algorithm (which uses the forward dynamics model to determine 
the inverse dynamics model's "opt.imal" El\IG). The latter method yielded a 30.0 % 
average reduction in acceleration prediction error over the direct method, thereby 
bringing the model output trajectory closer to the experimental data. 

3 TRAJECTORY FORMATION USING FORWARD 
AND INVERSE RELAXATION MODEL 

Previously, to generate a trajectory from discrete phoneme-specific via-points, we 
used a cascade neural network (c.f., Hirayama. et. al., 1992). The inverse dynamics 
model allows us t.o use an alternative network proposed by \\fada and Kawato (1993) 
(Figure 4). The network uses both the forward and inverse models of the controlled 
object, and updates a given initial rough trajectory passing through the via-points 
according to t.he dYllamics of the cont.rolled object and a smoothness constraint on 
the control input. The computation time of the net.work is much shorter than that 
of the cascade neural network CWada and Kawa.to, 1993). 

Figure 5 shows a forward dynamics model output trajectory driven by the model­
generated motor control signals. Unlike \Vada and Kawato's original model (1993) 
in which generated trajectories always pass through via-points, our tl'ajectories were 
generated from smoothed motor control signals (i.e., after applying the smoothness 
constraint) and, consequently, do not. pass through the exact via-points. In this 
paper, a typical value for each phoneme from experimental data was chosen as the 
target via-point. and was given in Cartesian coordinates relative to the maxillary 
incisor. Alt.hough further investigation is needed to refine the phoneme-specific 
target specifications (e.g. lip aperture targets), reasonable coarticulated trajectories 
were obtained from series of discret.e via-point t.argets (Figure 5). For engineering 
applications such as text-to-speech synthesizers using articulatory synthesis, this 
kind of technique is necessary because realistic coarticula.ted trajectories must serve 
as input to the articulatory synthesizer. 

~ e ~ (d 'd 
lal luI IiI lsI It I Articulatory Targets 

Figure 4: Speech t.rajectory formation scheme modified from the forward and inverse 
relaxation neural network model (\\'ada and Kawato, 1993). 
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Figure 5: Jaw trajectory generated by the forward and inverse relaxation model. 
The output of the forward dynamics model is used for this plot. 

A furthe!' advantage of this network is that. it can be llsed t.o predict phoneme­
specific via-point.s from t.he realized t.rajectory (vVada, Koike, Vatikiotis-Bateson 
and Kawato, 1993). This capability will allow us to use our forward and inverse 
dynamicb models for speech recognition in future, through acoustic to articula­
tory mapping (Shirai and Kobayashi, 1991; Papcun, Hochberg, Thomas, Laroche, 
Zacks and Levy, 1992) and the articulatory to phoneme specific via-points map­
ping discussed above. Because t.rajectories may be recovered from a small set of 
phoneme··specific via-points, this approach should be readily applicable to problems 
of speech data compression. 

4 DYNAMIC MODELING OF FORWARD ACOUSTICS 

The secoild area of progress is t.he improvement. in t.he forward acoustic network. 
Previously (Hirayama et al., 1993), we demonstrat.ed that acoustic signals can be 
obtained using a neural network that learns the mapping between articulator posi­
tions and acoustic PARCOR coetTIcients (ltakura and Saito, 1969; See also, Markel 
and Gray, ] 976). 

However, this modeling was effective only for vowels and a limited number of conso­
nants because the architecture of the model was basically the same as that of static 
articulatory synthesizers (e.g. Mermelst.ein, 1973). For nat.ural speech, aperiodic 
sources for plosive and sibilant consonants result. in multiple sets of acoustic pa­
rameters for the same articulator configurat.ion (i.e., the mapping is one-to-many) ; 
hence, learning did not fully converge. One approach t.o solving t his problem is 
to make source modeling completely separat.e from the vocal tract area modeling. 
However, for synthesis of natural sentences, t.he vocal tract transfer function model 
requires anot.her model for t.he non-glottal sources associated wit.h consonant pro­
duction . Since these sources are locat.ed at. various point.s along t.he vocal tract, 
their interaction is extremely complex. 

Our approach to solving this one-to-many mapping is to have the neural network 
learn the acoustic parameters along with the sound source characteristic specific 
to each phoneme. Thus, we put articulator positions with their velocities and 
voiced/voiceless informat.ion (e.g ., Markel and Gray, 1976) into the input (Figure 6) 
because the sound source characterist.ics are made not only by the articulator posi-
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Articulator Positions, Velocities 
& VoicedNoiceless 

Acoustic Wave 

___ G_lot_ta_1 s_o_u_rc_e ---'I-----L--'--___ -'--.J.--~~) ) ) 
Figure 6: Improved forward acoustic network. Inputs to the network are articulator 
positions and velocities and voiced/voiceless information. 

tion but also by the dynamic movement of articulators. 

For simulations, horizontal and vertical motions of jaw, upper and lower lips, and 
tongue tip and blade were used for the inputs and 12 dimensional PARCOR pa­
rameters were used for the outputs of the network. Figure 7(a) shows position­
velocity-voiced/voiceless network out.put compared with posit.ion-only network and 
experimentally obtained PARCOR parameters for a natural test sentence. Only the 
first two coefficients are shown. The first part of the test sentence, "Sam sat on top 
of the potato cooker and waited for Tommy to cut up a bag of tiny tomatoes and 
pop the beat tips into the pot," is shown in this plot. Figure 7(b)( c) show a part 
of the synthesized speech driven by funtlamental frequency pulses for voiced sounds 
and random noises for voiceless sounds. 

By using velocity and voiced/voiceless inputs, the performance was improved for 
natural utterances which include many vowels and consonants. The average val­
ues of the LPC-cepstrum distance mea.<.;ure between original and synthesized, were 
5.17 (dB) for the position-only network and 4.18 (dB) for the position-velocity­
voiced/voiceless network. When listening to the output, the sentence can be un­
derstood, and almost all vowels and many of the consonants can be classified. The 
overall clarity and the classifica.tion of some consonants is about as difficult as ex­
perienced in noisy international telephone calls. 

Although there are other potentia.l means to achieve further improvement (e.g. 
adding more tongue channels, using more balanced training patterns, incorporating 
nasality information, implementation of better glottal and non-glottal sources), the 
network synthesizes quite smooth and reasonable acoustic signals by incorporating 
aspects of the articulator dynamics. 

5 CONCLUSION 

We are modeling the information transfer from phoneme-specific articulatory targets 
to acoustic wave via the musculo-skeletal system, using a series of neural networks. 
Electromyographic (EMG) signals are used as the reflection of motor control com­
mands. In this paper, we have focused on the inverse dynamics modeling of the 
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for the original and synthesized speech. Utterance shown is "Sam sat on top" from 
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musculo-skeletal system, its control for the transform from discrete linguistic infor­
mation to continuous motor control signals, and articulatory speech synthesis using 
the articulator dynamics. '''Ie believe that. modeling the dynamics of articulat.ory 
motions is a key issue both for elucidating mechanisms of speech motor control and 
for synthesis of nat'llr'al utterances. 
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