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Abstract 

(Masino and Knudsen 1990) showed some remarkable results which 
suggest that head motion in the barn owl is controlled by distinct 
circuits coding for the horizontal and vertical components of move­
ment. This implies the existence of a set of orthogonal internal co­
ordinates that are related to meaningful coordinates of the external 
world. No coherent computational theory has yet been proposed 
to explain this finding. I have proposed a simple model which pro­
vides a framework for a theory of low-level motor learning. I show 
that the theory predicts the observed microstimulation results in 
the barn owl. The model rests on the concept of "Optimal U n­
supervised Motor Learning", which provides a set of criteria that 
predict optimal internal representations. I describe two iterative 
Neural Network algorithms which find the optimal solution and 
demonstrate possible mechanisms for the development of internal 
representations in animals. 

1 INTRODUCTION 

In the sensory domain, many algorithms for unsupervised learning have been pro­
posed. These algorithms learn depending on statistical properties of the input 
data, and often can be used to find useful "intermediate" sensory representations 
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Figure 1: Structure of Optimal Unsupervised Motor Learning. z is a reduced-order 
internal representation between sensory data y and motor commands u. P is the 
plant and G and N are adaptive sensory and motor networks. A desired value 
of z produces a motor command u = N z resulting in a new intermediate value 
z = GPNz. 

by extracting important features from the environment (Kohonen 1982, Sanger 
1989, Linsker 1989, Becker 1992, for example). An extension of these ideas to the 
domain of motor control has been proposed in (Sanger 1993). This work defined the 
concept of "Optimal Unsupervised Motor Learning" as a method for determining 
optimal internal representations for movement. These representations are intended 
to model the important controllable components of the sensory environment, and 
neural networks are capable of learning the computations necessary to gain control 
of these components. 

In order to use this theory as a model for biological systems, we need methods to 
infer the form of biological internal representations so that these representations 
can be compared to those predicted by the theory. Discrepancies between the 
predictions and results may be due either to incorrect assumptions in the model, or 
to constraints on biological systems which prevent them from achieving optimality. 
In either case, such discrepancies can lead to improvements in the model and are 
thus important for our understanding of the computations involved. On the other 
hand, if the model succeeds in making qualitative predictions of biological responses, 
then we can claim that the biological system possesses the optimality properties of 
the model, although it is unlikely to perform its computations in exactly the same 
manner. 

2 BARN OWL EXPERIMENTS 

A relevant set of experiments was performed by (Masino and Knudsen 1990) in 
the barn owl. These experiments involved microstimulation of sites in the optic 
tectum responsible for head movement. By studying the responses to stimulation 
at different sites separated by short or long time intervals, it was possible to infer the 
existence of distinct "channels" for head movement which could be made refractory 
by prior stimulation. These channels were oriented in the horizontal and vertical 
directions in external coordinates, despite the fact that the neck musculature of the 
barn owl is sufficiently complex that such orientations appear unrelated to any set 
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of natural motor coordinates. This result raises two related questions. First, why 
are the two channels orthogonal with respect to external Cartesian coordinates, and 
second, why are they oriented horizontally and vertically? 

The theory of Optimal Unsupervised Motor Learning described below provides a 
model which attempts to answer both questions. It automatically develops orthogo­
nal internal coordinates since such coordinates can be used to minimize redundancy 
in the internal representation and simplify computation of motor commands. The 
selection of the internal coordinates will be based on the statistics of the components 
of the sensory data which are controllable, so that if horizontal and vertical move­
ments are distinguished in the environment then these components will determine 
the orientation of intermediate channels. We can hypothesize that the horizontal 
and vertical directions are distinguished in the owl by their relation to sensory in­
formation generated from physical properties of the environment such as gravity or 
symmetry properties of the owl's head. In the simulation below, I show that reason­
able assumptions on such symmetry properties are sufficient to guarantee horizontal 
and vertical orientations of the intermediate coordinate system. 

3 OPTIMAL UNSUPERVISED MOTOR LEARNING 

Optimal Unsupervised Motor Learning (OUML) attempts to invert the dynamics of 
an unknown plant while maintaining control of the most important modes (Sanger 
1993). Figure 1 shows the general structure of the control loop, where the plant P 
maps motor commands u into sensory outputs y = Pu, the adaptive sensory trans­
formation G maps sensory data y into a reduced order intermediate representation 
z = Gy, and the adaptive motor transformation N maps desired values of z into the 
motor commands u = N z which achieve them. Let z = G P N z be the value of the 
intermediate variables after movement, and f) = P NGy be the resulting value of the 
sensory variables. For any chosen value of z we want z = z, so that we successfully 
control the intermediate variables. 

In (Sanger 1993) it was proposed that we want to choose z to have lower dimen­
sionality than y and to represent only the coordinates which are most important 
for controlling the desired behavior. Thus, in general, f) =/; y and Ily - f)1I is the 
performance error. OUML can then be described as 

1. Minimize the movement error 1If) - yll 

2. Subject to accurate control z = z. 

These criteria lead to a choice of internal representation that maximizes the loop 
gain through the plant. 

Theorem 1: (Sanger 1993) For any sensory mapping G there exists a motor 
mapping N such t~at z = z, and [; _ E[lIy - f)1I] is mi1!.imized when G is chosen to 
minimize E[lly - G-1Gyll]' where G-l is such that GG-l = I. 

The function G is an arbitrary right inverse of G, and this function determines the 
asymptotic values of the unobserved modes. In other words, since G in general is 
dimensionality-reducing, z = Gy will not respond to all the modes in y so that 
dissimilar states may project to identical intermediate control variables z. The 
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Plant 1 II Motor Sensory 

Linear Linear Eigenvectors of E[yy'l ] 
RBF Linear Eigenvectors of basis function outputs 
Polynomial Polynomial Eigenvectors of basis function outputs 

Figure 2: Special cases of Theorem 1. If the plant inverse is linear or can be 
approximated using a sum of radial basis functions or a polynomial, then simple 
closed-form solutions exist for the optimal sensory network and the motor network 
only needs to be linear or polynomial. 

function a- 1 G is a projection operator that determines the resulting plant output 
fJ for any desired value of y. Unsupervised motor learning is "optimal" when the 
projection surface determined by a- 1G is the best approximation to the statistical 
density of desired values of y. 

Without detailed knowledge of the plant, it may be difficult to find the general 
solution described by the theorem. Fortunately, there are several important special 
cases in which simple closed-form solutions exist. These cases are summarized 
in figure 2 and are determined by the class of functions to which the plant inverse 
belongs. If the plant inverse can be approximated as a sum of radial basis functions, 
then the motor network need only be linear and the optimal sensory network is given 
by the eigenvectors of the autocorrelation matrix of the basis function outputs (as 
in (Sanger 1991a)). If the plant inverse can be approximated as a polynomial over 
a set of basis functions (as in (Sanger 1991b)), then the motor network needs to be 
a polynomial, and again the optimal sensory network is given by the eigenvectors 
of the autocorrelation matrix of the basis function outputs. 

Since the model of the barn owl proposed below has a linear inverse we are interested 
in the linear case, so we know that the mappings Nand G need only be linear and 
that the optimal value of G is given by the eigenvectors of the autocorrelation matrix 
of the plant outputs y. In fact, it can be shown that the optimal Nand G are given 
by the matrices ofleft and right singular vectors of the plant inverse (Sanger 1993). 

Although several algorithms for iterative computation of eigenvectors exist, until 
recently there were no iterative algorithms for finding the left and right singular 
vectors. I have developed two such algorithms, called the "Double Generalized 
Hebbian Algorithm" (DGHA) and the "Orthogonal Asymmetric Encoder" (OAE). 
(These algorithms are described in detail elsewhere in this volume.) DGHA is 
described by: 

!J..G 

!J..NT 

while OAE is described by: 

!J..G 

!J..NT 

r(zyT - LT[zzT]G) 

r(zuT - LT[zzT]NT ) 

r(zyT - LT[zzT]G) 

r( Gy - LT[GGT]z)uT 

where LT[ ] is an operator that sets the above diagonal elements of its matrix 
argument to zero, y = Pu, z = Gy, z = NT u, and r is a learning rate constant. 
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Figure 3: Owl model, and simulation results. The "Sensory Transform" box shows 
the orientation tuning of the learned internal representation. 

4 SIMULATION 

I use OUML to simulate the owl head movement experiments described in (Masino 
and Knudsen 1990), and I predict the form of the internal motor representation. I 
assume a simple model for the owl head using two sets of muscles which are not 
aligned with either the horizontal or the vertical direction (see the upper left block 
of figure 3). This model is an extreme oversimplification of the large number of 
muscle groups present in the barn owl neck, but it will serve to illustrate the case 
of muscles which do not distinguish the horizontal and vertical directions. 

I assume that during learning the owl gives essentially random commands to the 
muscles, but that the physics of head movement result in a slight predominance of 
either vertical or horizontal motion. This assumption comes from the symmetry 
properties of the owl head, for which it is reasonable to expect that the axes of 
rotational symmetry lie in the coronal, sagittal, and transverse planes, and that 
the moments of inertia about these axes are not equal. I model sensory receptors 
using a set of 12 oriented directionally-tuned units, each with a half-bandwidth at 
half-height of 15 degrees (see the upper right block of figure 3). Together, the Neck 
Muscles and Movement Sensors (the two upper blocks of figure 3) form the model 
of the plant which transforms motor commands u into sensory outputs y. Although 
this plant is nonlinear, it can be shown to have an approximately linear inverse on 

y 
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Desired Direction 

Figure 4: Unsupervised Motor Learning successfully controls the owl head simula­
tion. 

its range. 

The sensory units are connected through an adaptive linear network G to three 
intermediate units which will become the internal coordinate system z. The three 
intermediate units are then connected back to the motor outputs through a motor 
network N so that desired sensory states can be mapped onto the motor commands 
necessary to produce them. The sensory to intermediate and intermediate to motor 
mappings were allowed to adapt to 1000 random head movements, with learning 
controlled by DGHA. 

5 RESULTS 

After learning, the first intermediate unit responded to the existence of a motion, 
and did not indicate its direction. The second and third units became broadly 
tuned to orthogonal directions. Over many repeated learning sessions starting from 
random initial conditions, it was found that the intermediate units were always 
aligned with the horizontal and vertical axes and never with the diagonal motor 
axes. The resulting orientation tuning from a typical session is shown in the lower 
right box of figure 3. 

Note that these units are much more broadly tuned than the movement sensors 
(the half-bandwidth at half-height is 45 degrees). The orientation of the internal 
channels is determined by the assumed symmetry properties of the owl head. This 
information is available to the owl as sensory data, and OUML allows it to determine 
the motor representation. The system has successfully inverted the plant, as shown 
in figure 4. 

(Masino and Knudsen 1990) investigated the intermediate representations in the 
owl by taking advantage of the refractory period of the internal channels. It was 
found that if two electrical stimuli which at long latency tended to move the owl's 
head in directions located in adjacent quadrants were instead presented at short 
latency, the second head movement would be aligned with either the horizontal or 
vertical axis. Figure 5 shows the general form of the experimental results, which 
are consistent with the hypothesis that there are four independent channels coding 
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Figure 5: Schematic description of the owl head movement experiment. At long 
interstimulus intervals (lSI), moves 2a and 2b move up and to the right, but at 
short lSI the rightward channel is refractory from move 1 and thus moves 2a and 
2b only have an upward component. 
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Figure 6: Movements align with the vertical axis as the lSI shortens. a. Owl 
data (reprinted with permission from (Masino and Knudsen 1990». h. Simulation 
results. 

the direction of head movement, and that the first movement makes either the 
left, right, up, or down channels refractory. As the interstimulus interval (lSI) is 
shortened, the alignment of the second movement with the horizontal or vertical 
axis becomes more pronounced. This is shown in figure 6a for the barn owl and 6b 
for the simulation. If we stimulate sites that move in many different directions, we 
find that at short latency the second movement always aligns with the horizontal 
or vertical axis, as shown in figure 7a for the owl and figure 7b for the simulation. 

6 CONCLUSION 

Optimal Unsupervised Motor Learning provides a model for adaptation in low-level 
motor systems. It predicts the development of orthogonal intermediate representa­
tions whose orientation is determined by the statistics of the controllable compo­
nents of the sensory environment . The existence of iterative neural algorithms for 
both linear and nonlinear plants allows simulation of biological systems, and I have 
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Figure 7: At long lSI, the second movement can occur in many directions, but 
at short lSI will tend to align with the horizontal or vertical axis. a. Owl data 
(reprinted with permission from (Masino and Knudsen 1990)). h. Simulation re­
sults. 

shown that the optimal internal representation predicts the horizontal and vertical 
alignment of the internal channels for barn owl head movement. 
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