
A Comparative Study Of A Modified 
Bumptree Neural Network With Radial Basis 
Function Networks and the Standard Multi
Layer Perceptron. 

Richard T .J. Bostock and Alan J. Harget 
Department of Computer Science & Applied Mathematics 

Aston University 
Binningham 

England 

Abstract 

Bumptrees are geometric data structures introduced by Omohundro 
(1991) to provide efficient access to a collection of functions on a 
Euclidean space of interest. We describe a modified bumptree structure 
that has been employed as a neural network classifier, and compare its 
performance on several classification tasks against that of radial basis 
function networks and the standard mutIi-Iayer perceptron. 

1 INTRODUCTION 

A number of neural network studies have demonstrated the utility of the multi-layer 
perceptron (MLP) and shown it to be a highly effective paradigm. Studies have also 
shown, however, that the MLP is not without its problems, in particular it requires an 
extensive training time, is susceptible to local minima problems and its perfonnance is 
dependent upon its internal network architecture. In an attempt to improve upon the 
generalisation performance and computational efficiency a number of studies have been 
undertaken principally concerned with investigating the parametrisation of the MLP. It is 
well known, for example, that the generalisation performance of the MLP is affected by 
the number of hidden units in the network, which have to be determined empirically since 
theory provides no guidance. A number of investigations have been conducted into the 
possibility of automatically determining the number of hidden units during the training 
phase (BostOCk, 1992). The results show that architectures can be attained which give 
satisfactory, although generally sub-optimal, perfonnance. 

Alternative network architectures such as the Radial Basis Function (RBF) network have 
also been studied in an attempt to improve upon the performance of the MLP network. 
The RBF network uses basis functions in which the weights are effective over only a 
small portion of the input space. This is in contrast to the MLP network where the 
weights are used in a more global fashion, thereby encoding the characteristics of the 
training set in a more compact form. RBF networks can be rapidly trained thus making 

240 



Modified Bumptree Neural Network and Standard Multi-Layer Perceptron 241 

them particularly suitable for situations where on-line incremental learning is required. 
The RBF network has been successfully applied in a number of areas such as speech 
recognition (Renals, 1992) and financial forecasting (Lowe, 1991). Studies indicate that 
the RBF network provides a viable alternative to the MLP approach and thus offers 
encouragement that networks employing local solutions are worthy of further 
investigation. 

In the past few years there has been an increasing interest in neural network architectures 
based on tree structures. Important work in this area has been carried out by Omohundro 
(1991) and Gentric and Withagen (1993). These studies seem to suggest that neural 
networks employing a tree based structure should offer the same benefits of reduced 
training time as that offered by the RBF network. The particular tree based architecture 
examined in this study is the bumptree which provides efficient access to collections of 
functions on a Euclidean space of interest. A bumptree can be viewed as a natural 
generalisation of several other geometric data structures including oct-trees, k-d trees, 
balltrees (Omohundro, 1987) and boxtrees (Omohundro, 1989). 

In this paper we present the results of a comparative study of the performance of the three 
types of neural networks described above over a wide range of classification problems. 
The performance of the networks was assessed in terms of the percentage of correct 
classifications on a test, or generalisation data set, and the time taken to train the 
network. Before discussing the results obtained we shall give an outline of the 
implementation of our bumptree neural network since this is more novel than the other 
two networks. 

2 THE BUMPTREE NEURAL NETWORK 

Bumptree neural networks share many of the underlying principles of decision trees but 
differ from them in the manner in which patterns are classified. Decision trees partition 
the problem space into increasingly small areas. Classification is then achieved by 
determining the lowest branch of the tree which contains a reference to the specified point. 
The bumptree neural network described in this paper also employs a tree based structure to 
partition the problem space, with each branch of the tree being based on multiple 
dimensions. Once the problem space has been partitioned then each branch can be viewed 
as an individual neural network modelling its own local area of the problem space, and 
being able to deal with patterns from multiple output classes. 

Bumptrees model the problem space by subdividing the space allowing each division to 
be described by a separate function. Initial partitioning of the problem space is achieved 
by randomly assigning values to the root level functions. A learning algorithm is applied 
to determine the area of influence of each function and an associated error calculated. If 
the error exceeds some threshold of acceptability then the area in question is further 
subdivided by the addition of two functions; this process continues until satisfactory 
performance is achieved. The bumptree employed in this study is essentially a binary tree 
in which each leaf of the tree corresponds to a function of interest although the possibility 
exists that one of the functions could effectively be redundant if it fails to attract any of 
the patterns from its parent function. 

A number of problems had to be resolved in the design and implementation of the 
bumptree. Firstly, an appropriate procedure had to be adopted for partitioning the 



242 Bostock and Harget 

problem space. Secondly, consideration had to be given to the type of learning algorithm 
to be employed. And finally, the mechanism for calculating the output of the network 
had to be determined. A detailed discussion of these issues and the solutions adopted now 
follows. 

2.1 PARTITIONING THE PROBLEM SPACE 

The bumptree used in this study employed gaussian functions to partition the problem 
space, with two functions being added each time the space was partitioned. Patterns were 
assigned to whichever of the functions had the higher activation level with the restriction 
that the functions below the root level could only be active on patterns that activated their 
parents. To calculate the activation of the gaussian function the following expression 
was used: 

(1) 

where Afp is the activation of function f on pattern p over all the input dimensions, afi is 
the radius of function f in input dimension i, Cfi is the centre of function f in input 
dimension i, and Inpi is the ith dimension of the pth input vector. 

It was found that the locations and radii of the functions had an important impact on the 
performance of the network. In the original bumptree introduced by Omohundro every 
function below the root level was required to be wholly enclosed by its parent function. 
This restriction was found to degrade the performance of the bumptree particularly if a 
function had a very small radius since this would produce very low levels of acti vation for 
most patterns. In our studies we relaxed this constraint by assigning the radius of each 
function to one, since the data presented to the bumptree was always normalised between 
zero and one. This modification led to an improved performance. 

A number of different techniques were examined in order to effectively position the 
functions in the problem space. The first approach considered, and the simplest, involved 
selecting two initial sets of centres for the root function with the centre in each dimension 
being allocated a value between zero and one. The functions at the lower levels of the tree 
were assigned in a similar manner with the requirement that their centres fell within the 
area of the problem space for which their parent function was active. The use of non
hierarchical clustering techniques such as the Forgy method or the K-means clustering 
technique developed by MacQueen provided other alternatives for positioning the 
functions. The approach finally adopted for this study was the multiple-initial function 
(MIF) technique. 

In the MIF procedure ten sets of functions centres were initially defined by random 
assignment and each pattern in the training set assigned to the function with the highest 
activation level. A "goodness" measure was then determined for each function over all 
patterns for which the function was active. The goodness measure was defined as the 
square of the error between the calculated and observed values divided by the number of 
active patterns. The function with the best value was retained and the remaining 
functions that were active on one or more patterns had their centres averaged in each 
dimension to provide a second function. The functions were then added to the network 
structure and the patterns assigned to the function which gave the greater activation. 



Modified Bumptree Neural Network and Standard Multi-Layer Perceptron 243 

2.2 THE LEARNING ALGORITHM 

A bumptree neural network comprises a number of functions each function having its 
own individual weight and bias parameters and each function being responsive to different 
characteristics in the training set. The bumptree employed a weighted value for every 
input to output connection and a single bias value for each output unit. Several different 
learning algorithms for determining the weight and bias values were considered together 
with a genetic algorithm approach (Williams, 1993). A one-shot learning algorithm was 
finally adopted since this gave good results and was computationally efficient. The 
algorithm used a pseudo-matrix inversion technique to determine the weight and bias 
parameters of each function after a single presentation of the relevant patterns in the 
training set had been made. The output of any function for a given pattern p was 
determined from 

jmax 

= "" a * (p) + f.l. GO ipz £..J ijz X j Piz (2) 
j=l 

where aoipz is the output of the zth output unit of the ith function on the pth pattern, j is 
the input unit, jmax is the total number of input units, aijz is the weight that connects 

the jth input unit to the zth output unit for the ith function, Xj(p) is the element of the 
pth pattern concerned with the jth input dimension, and ~iz is the bias value for the zth 
output unit. 

The weight and bias parameters were determined by minimising the squared error given in 
(3), where Ei is the error of the ith function across all output dimensions (zmax), for all 
patterns upon which the function is active (pmax). The desired output for the zth output 
dimension is tvpz" and aoipz is the actual output of the ith function on the zth 
dimension of the pth pattern. The weight values are again represented by Ooijz and the bias 

by ~iz' 

(3) 

After the derivatives of aijz and ~iz were determined it was a simple task to arrive at the 
three matrices used to calculate the weight and bias values for the individual functions. 
Problems were encountered in the matrix inversion when dealing with functions which 
were only active on a few patterns and which were far removed from the root level of the 
tree; this led to difficulties with singular matrices. It was found that the problem could be 
overcome by using the Gauss-Jordan singular decomposition technique for the pseudo
inversion of the matrices. 

2.3 CALCULATION OF THE NETWORK OUTPUT 

The difficulty in determining the output of the bumptree was that there were usually 
functions at different levels of the tree that gave slightly different outputs for each active 
pattern. Several different approaches were studied in order to resolve the difficulty 
including using the normalised output of all the active functions in the tree irrespective of 
their level in the structure. A technique which gave good results and was used in this 



244 Bostock and Harget 

study calculated the output for a pattern solely on the output of the lowest level active 
function in the tree. The final output class of a pattern being given by the output unit 
with the highest level of activation. 

3 NETWORK PERFORMANCES 

The perfonnance of the bumptree neural network was compared against that of the 
standard MLP and RBF networks on a number of different problems. The bumptree used 
the MIF placing technique in which the radius of each function was set to one. This 
particular implementation of the bumptree will now be referred to as the MIF bumptree. 
The MLP used the standard backpropagation algorithm (Rumelhart, 1986) with a 
learning rate of 0.25 and a momentum value of 0.9. The initial weights and bias values 
of the network were set to random values between -2 and +2. The number of hidden units 
assigned to the network was determined empirically over several runs by varying the 
number of hidden units until the best generalisation perfonnance was attained. The RBF 
network used four different types of function, they were gaussian, multi-quadratic, 
inverse multi-quadratic and thin plate splines. The RBF network placed the functions 
using sample points within the problem space covered by the training set 

3.1 INITIAL STUDIES 

In the initial studies. a set of classical non-linear problems was used to compare the 
perfonnance of the three types of networks. The set consisted of the XOR, Parity(6) and 
Encoder(8) problems. The average results obtained over 10 runs for each of the data sets 
are shown in Table 1 - the figures presented are the percentage of patterns correctly 
classified in the training set together with the standard deviation. 

Table 1. Percentage of Patterns Correctly Classified for the three Data Sets for each 
Network type. 

DATA SET MLP RBF MIF 

XOR 
Parity(6) 
Encoder(8) 

100 
100 
100 

100 
92.1 ± 4.7 
82.5 ± 16.8 

100 
98.3 ± 4.2 
100 

For the XOR problem the MLP network required an average of 222 iterations with an 
architecture of 4 hidden units, for the parity problem an architecture of 10 hidden units and 
an average of 1133 iterations. and finally for the encoder problem the network required an 
average of 1900 iterations for an architecture consisting of three hidden units. 

The RBF network correctly classified all the patterns of the XOR data set when four 
multi-quadratic. inverse multi-quadratic or gaussian functions were used. For the parity(6) 
problem the best result was achieved with a network employing between 60 and 64 
inverse multi-quadratic functions. In the case of the encoder problem the best performance 
was obtained using a network of 8 multi-quadratic functions. 

The MIF bumptree required two functions to achieve perfect classification for the XOR 
and encoder problems and an average of 40 functions in order to achieve the best 
perfonnance on the parity problem. Thus in the case of the XOR and encoder problems 
no further functions were required additional to the root functions. 



Modif1ed Bumptree Neural Network and Standard Multi-Layer Perceptron 245 

A comparison of the training times taken by each of the networks revealed considerable 
differences. The MLP required the most extensive training time since it used the 
backpropagation training algorithm which is an iterative procedure. The RBF network 
required less training time than the MLP, but suffered from the fact that for all the 
patterns in the training set the activity of all the functions had to be calculated in order to 
arrive at the optimal weights. The bumptree proved to have the quickest training time for 
the parity and encoder problems and a training time comparable to that taken by the RBF 
network for the XOR problem. This superiority arose because the bumptree used a non
iterative training procedure, and a function was only trained on those members of the 
training set for which the function was active. 

In considering the sensitivity of the different networks to the parameters chosen some 
interesting results emerge. The performance of the MLP was found to be dependent on 
the number of hidden units assigned to the network. When insufficient hidden units were 
allocated the performance of the MLP degraded. The performance of the RBF network 
was also found to be highly influenced by the values taken for various parameters, in 
particular the number and type of functions employed by the network. The bumptree on 
the other hand was assigned the same set of parameters for all the problems studied and 
was found to be less sensitive than the other two networks to the parameter settings. 

3.2 COMPARISON OF GENERALISATION PERFORMANCE 

The performance of the three different networks was also measured for a set of four 'real
world' problems which allowed the generalisation performance of each network to be 
determined. A summary of the results taken over 10 runs is given in Table 2. 

Table 2 Performance of the Networks on the Training and Generalisation Data Sets of the 
Test Problems. 

DATA NETWORK FUNCTIONS TRAINING TEST 
HIDDEN UNITS 

Iris 
MLP 4 100 95.7 ± 0.6 
RBF 75 gaussians 100 96.0 ± 0.0 
MIF 8 100 97.5 ± 0.4 

Skin 
Cancer 

MLP 6 88.7 ± 4.3 79.2 ± 1.7 
RBF 10 multi-quad 84.4 ± 3.2 80.3 ± 4.4 
MIF 4 79.8 ± 5.2 80.8 ± 1.9 

Vowel 
Data 

MLP 20 82.4 ± 5.3 77.1 ± 6.6 
RBF 50 Thin plate spl. 82.1 ± 1.5 77.8 ± 1.4 
MIF 104 86.5 ± 5.6 73.6 ± 4.6 

Diabetes 
MLP 16 82.5 ± 2.7 78.9 ± 1.2 
RBF 25 Thin plate spl. 76.0 ± 0.8 78.9 ± 0.9 
MIF 3 76.5 ± 1.2 80.0 ± 1.1 

All three networks produce a comparable performance on the test problems, but in the 
case of the bumptree this was achieved with a training time substantially less than that 
required by the other networks. Inspection of the results also shows that the bumptree 
required fewer functions in general than the RBF network. 



246 Bostock and Harget 

The results shown above for the bumptree were obtained with the same set of parameters 
used in the initial study which further confirms its lack of sensitivity to parameter 
settings. 

4. CONCLUSION 

A comparative study of the performance of three different types of networks, one of which 
is novel, has been conducted on a wide range of problems. The results show that the 
performance of the bumptree compared very favourably, both in terms of generalisation 
and training times, with the more traditional MLP and RBF networks. In addition, the 
performance of the bumptree proved to be less sensitive to the parameters settings than 
the other networks. These results encourage us to continue further investigation of the 
bumptree neural network and lead us to conclude that it has a valid place in the list of 
current neural networks. 

Acknowledgement 
We gratefully acknowledge the assistance given by Richard Rohwer. 

References 
Bostock R.T 1. & Harget Al. (1992) Towards a Neural Network Based System for Skin 
Cancer Diagnosis: lEE Third International Conference on Artificial Neural Networks: 
P21S-220. 
Broomhead D.S. & Lowe D. (1988) Radial Basis Functions, Multi-Variable Functional 
Interpolation and Adaptive Networks: RSRE Memorandum No. 4148, Royal Signals and 
Radar Establishment, Malvern, England. 
Gentric P. & Withagen H.C.A.M. (1993) Constructive Methods for a New Classifier 
Based on a Radial Basis Function Network Accelerated by a Tree: Report, Eindhoven 
Technical University, Eindhoven, Holland. 
Lowe D. & Webb A.R. (1991) Time Series Prediction by Adaptive Networks: A 
Dynamical Systems Perspective: lEE Proceedings-F, vol. 128(1), Feb." P17-24. 
Moody J. & Darken C. (1988) Learning With Localized Receptive Fields: Research 
Report YALE UID CSIRR-649. 
Omohundro S.M. (1987) Efficient Algorithms With Neural Network Behaviour; in 
Complex Systems 1 (1987): P273-347. 
Omohundro S.M. (1989) Five Balltree Construction Algorithms: International 
Computer Science Institute Technical Report TR-89-063. 
Omohundro S.M. (1991) Bumptrees for Efficient Function, Constraint, and 
Classification Learning: Advances in Neural Information Processing Systems 3, P693-
699. 
Renals S. & Rohwer R.J. (1989) Phoneme Classification Experiments Using Radial 
Basis Functions: Proceedings of the IJCNN, P461-467. 
Rumelhart D.E., Hinton G.E. & Williams Rl. (1986) Learning Internal Representations 
by Error Propagation: in Parallel Distributed Processing, vol. 1 P318-362. Cambridge, 
MA : MIT Press. 
Williams B.V., Bostock R.TJ., Bounds D.G. & Harget A.J. (1993) The Genetic 
Bumptree Classifier: Proceedings of the BNSS Symposium on Artificial Neural 
Networks: to be published. 


